

LOGICAL DATA MODELING

INTEGRATED SERIES IN INFORMATION SYSTEMS

Series Editors
Professor Ramesh Sharda
Oklahoma State University

Prof. Dr. Stefan VoB
Universitat Hamburg

Expository and
Research

Monographs

Integrative
Handbooks

Advanced Topics
on

Information Systems!

• Expository

• Research

• Selected
Dissertations

• State of the art of
application domain and/or

' reference disciplines as
related to information
systems

• Edited refereed numbered volumes

• Guest edited by experts

• Refereed conference
proceedings

Other published titles in the series:

E-BUSINESS MANAGEMEISTT: Integration of Web Technologies with Business
Models! Michael J. Shaw

VIRTUAL CORPORATE UNIVERSITIES: A Matrix of Knowledge and Learning
for the New Digital Dawn/Walter RJ. Baets & Gert Van der Linden

SCALABLE ENTERPRISE SYSTEMS: An Introduction to Recent Advances/
edited by Vittal Prabhu, Soundar Kumara, Manjunath Kamath

LEGAL PROGRAMMING; Legal Compliance for RFID and Software Agent
Ecosystems in Retail Processes and Beyond/ Brian Subirana and Malcolm Bain

LOGICAL DATA MODELING
What it is and How to do it

Alan Chmura
Eastern New Mexico University, Portales, New Mexico

J. Mark Heumann
META Group EMEA, Dubai, UAE

Springer

Alan Chmura J. Mark Heumann
Eastern New Mexico University META Group EMEA
Portales, New Mexico Dubai, UAE

Library of Congress Cataloging-in-Publication Data

A CLP. Catalogue record for this book is available
from the Library of Congress.

ISBN 0-387-22950-7 e-ISBN 0-387-22962-0 Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science + Business
Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now know or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if the are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11054832

springeronline.com

Contents

Preface vii

Acknowledgments xi

1. GETTING STARTED 1

2. THE ART GALLERY WEB: A DATA MODELING EXAMPLE 31

3. BUILDING THE DATA MAP 35

4. THE ART GALLERY WEB (CONTINUED) 55

5. KEYS AND VALID ASSOCIATIONS 63

6. THE ART GALLERY WEB (CONTINUED) 99

7. DEFINING ATTRIBUTES 109

8. THE ART GALLERY WEB (CONTINUED) 127

9. VERIFYING THE DATA MODEL 133

vi Contents

10. VALIDATING THE DATA MODEL 149

11. DESIGN PATTERNS 167

12. FROM LOGICAL TO PHYSICAL 197

13. THE END AND THE BEGINNING 217

References 221

Index 223

Preface

This book is directed toward three groups of people:

• Business subject matter experts
• Information technology professionals
• Advanced students in Computer Science, Management Information

Systems, and e-Business.

The book's purpose is to teach the basics of logical data modeling—
specifically, data modeling for relational database management systems—in
simple, practical terms and in a business context. We feel that relational data
modeling is better than object oriented data modeling, hierarchical data
modeling, and network data modeling when it comes to modeling real
business activities.

We have written this book from the point of view of the project leader or
project manager, a subject matter expert charged with developing a
relational database and the information systems which interact with that
database. Of course, real-world data modeling is best done by experienced
data modelers. But by reading and understanding this book, the enterprise-
side project manager should gain enough understanding of data modeling to
follow what is going on and help communicate that understanding to the
people who know the business, do the work, and are going to be affected by
the system being built.

The person who masters this material should be able to

• show an understanding of the business function of logical data
modeling

viii Preface

• show an understanding of the role of collaboration and community
in building a data model

• collect business rules for a functional area
• write formal Business Statements
• translate those Business Statements into logical data model entities,

attributes, and associations
• build a data map
• create an entity list
• validate the data model against normalization and other standards
• assist a Database Administrator in translating the logical data model

into a physical data model.

Advisory

The Boy Scouts place this statement at the beginning of every recipe they
publish:

Read instructions twice before starting.

Sounds like good advice to us.

A NOTE ON TERMINOLOGY

There is no universal agreement regarding the terms used in logical data
modeling. The following table shows many essential terms used in this book
and corresponding terms in several data modeling notations other than ours.
The table is not intended to exhaust the vocabulary of data modeling, nor are
all data modeling notations represented. We do not claim that the terms we
have provided are necessarily the best or the only terms, or that we have
completed work on the matrix.

We have excluded several flavors of entity (Principal, Role, Structure,
and Type) because we have discovered few if any directly correlating
examples in notations other than Information Engineering. Strong and weak
entity flavors, used in some notations, do not correspond directly with
Information Engineering notation.

Unified Modeling Language (UML) is a generalized language. It deals
with objects and classes (constructs within the object-oriented paradigm),
not data per se, and it is usually used for defining the components of
software applications other than relational databases (the kind of database
for which we are modeling). Because UML is generalized and object-
oriented, its terminology maps only approximately to the terminology used
in this book.

Logical data modeling IX

The following sources were used in preparing this table:

• Chen Entity Relationship: Chen 1976.
• IDEFIX: US Government 1993.
• Oracle/Barker: Halpin 2000; Barker 1990; Burek 2004.
• Semantic Object Model: Kroenke 2002.
• UML: Object Management Group 2003.

This book

association

attribute

cardinality

categorizing
association
child

compound
primary key
data map

entity

foreign key

instance

identifying
association
intersecting
entity

key

mandatory
non-
identifying

1 association

Chen Entity-
Relationship

relationship

attribute

cardinality,
connectivity
—

weak entity,
dependent
entity
—

entity, entity
type, entity
set

entity

—

intersection
entity, bridge
entity
identifier

—

IDEFIX

relationship

attribute

cardinality

categorizing
relationship
child entity

composite
key
diagram

entity

foreign key,
migrated
attribute
entity
instance
identifying
relationship
associative
entity

key

mandatory
non-
identifying
relationship

Oracle/
Barker

relationship

attribute

cardinality,
degree
—

—

entity type,
entity

—

—

unique
identifier
mandatory

Semantic
Object
Model
semantic
object
attribute,
object link
attribute,
property
cardinality

—

subtype
object

group
identifier
semantic
object
model
class

object
instance
—

association
object

—

mandatory

UML 1

association

attribute

cardinality,
multiplicity

—

child

—

class diagram

class

instance

—

association
class

—

—

Preface

This book

non-key
attribute
optional
optionality

parent

primary key

recursive
entity
secondary
entity
subtype

supertype

Chen Entity-
Relationship

descriptor

optional
optionality,
existence
entity,
independent
entity
entity type
identifier

unary

—

sub-type,
entity
subtype

super-type

IDEFIX

non-key
attribute
optional
—

parent entity

primary key

—

categorizing
entity
sub-type,
sub-class,
entity
category
generic
entity,
super-type,
super-class

Oracle/
Barker

—

optional
optionality

primary
identifier,
primary key
recursive

—

subtype

supertype

Semantic
Object
Model
—

optional
—

parent
object

object
identifier

—

—

subtype
object

parent
object

UML 1

—

1
—

parent,
superclass

—

child,
subclass
subtype,
generalization

supertype

Acknowledgments

We acknowledge with gratitude the contributions made by Clive
Finkelstein, the Father of Information Engineering. His books

• An Introduction to Information Engineering: From Strategic
Planning to Information Systems (Sydney: Addison-Wesley, 1990)
and

• Information Engineering: Strategic Systems Development (Sydney:
Addison-Wesley, 1992)

have been of inestimable value.

We wish also to thank

• Visible Systems Corporation for their support, both for giving us use
of their enterprise modeling tool Visible Advantage and for
answering the many questions that arose in the course of writing

• Craig Mullins, Database Administration: The Complete Guide to
Practices and Procedures (Boston: Addison-Wesley, 2002), for his
contribution to our discussion of denormalization (Chapter 12)

• Michael C. Reingruber and William W. Gregory, The Data
Modeling Handbook (New York: Wiley, 1994), for their
contributions to our discussion of attributes (Chapter 7), verification
(Chapter 9), and normalization (Chapter 10).

• Peter Rob and Elie Semaan, Databases: Design, Development, and
Deployment Using Microsoft Access, 2nd ed. (New York: Irwin
McGraw-Hill, 2004), for their contribution to our discussion of
normalization (Chapter 10).

Chapter 1

GETTING STARTED
Where in we see how disorganized the company really is

It's been a good day, your first day as the new Production Manager of
Pinebeach Screen Printing and Embroidery. At least, it was a good day until
the owner dropped in.

"Hey, do you know anybody that can build a database?" he says.
"Basically, we need something to retrieve our customer information and
document the work orders."

Work orders. The words make you shudder. The paper-based work order
system is a nightmare, and all the customer information is on note cards.

"It takes Stephanie three to five hours a day to compile orders," the boss
continues. "And we're growing. With our growth, we need to look at the big
picture. We need to see exactly what we have, what is pending, and what's
completed. We can't do that with our current paper-based system.

"We're doing a lot of unnecessary work every day. I don't know all the
parameters, but the system has to be user friendly. Many of our work order
processes aren't written down. If my wife and I were to die tomorrow, you
would have to take over, and you wouldn't know half of what we do."

Whoa. You hadn't thought of that. But he's right.

The boss continues. It's like he's thinking out loud. "We need to free up
time to generate more revenue. We need to have a computer to go to so we
don't lose work orders. We can't just shut down the paper and pencil system.
We can't spend a lot of time training...."

You can see it's going to be a long day.

Chapter 1

WHAT TO DO, WHAT TO DO . . .

You start with a little noodling. If you were building a real building,
you'd think about

1. Use: what purposes it is supposed to serve. After all, form follows
function.

2. Design: how high, wide, and deep, what characteristics it must have
(doors, windows, roof), how the space must be organized inside, what
plumbing and electrical codes and other external constraints apply

3. Location: where it will be, how to get there, what the site will be like
4. Organization: who's going to build it and how the job is going to be

run
5. Financing: what it's going to cost and where you're going to get the

money.

You can set financing aside, for the moment at least. The boss has
already decided that a database is the way to go. So presumably the company
has the money.

Location? A database goes on a computer, on a particular database
system. You make a note: talk to the Information Technology (IT) people.

Organization? There's a tough one. Are you expected to be your own
project manager? Or has one been assigned? What about staff? Who will be
needed? What skill sets? Training? Methods? This needs a lot of looking
into.

And so you've come to that inseparable duo, use and design, and to the
fundamental question: What's the scope? What's included? What's
excluded?

You've already been told what's included: your area of the business.
That helps. It also helps to know a little about databases. Relational
databases. A bunch of tables made up of rows and columns. So it should be
enough to specify those tables, their attributes, and their relationships.

Or is it enough? And how do you do it? The big question hovers
overhead:

What goes into a database design?

And out of the ether, an answer:

Database design begins with the business.

GETTING STARTED

Up to this point, you'd been wondering if you're supposed to be involved
at all. But, in fact, you are the essential person, and for one reason: You
know your business, what it is and what it's supposed to be.

Imagine the database as a mirror of your business area—or, better, a
painting of it. The things that exist in the real world have to be translated
into images, and those images have to be arranged on the canvas. Put the
right images in the right place, and your painting shows how the world is
made. Wrong images, wrong places, and you've got a mess.

You know your world best. In systems development terms, you're a
subject matter expert, and the role of a subject matter expert is to provide
the business knowledge that will determine the design of the automated
system. In applications development, you might be called a requirements
engineer. But you're concerned specifically with database requirements:
what data will be stored and what relationships among data will be
established in the database.

To define the requirements for your database, you document your
business knowledge by writing business planning statements. Then (with the
help, usually, of at least one experienced data modeler) you formalize that
knowledge in a logical data model. The logical data model is the design for
the painting, the blueprint for the building.

Once your logical data model is built, you'll work with your database
people to translate it into physical tables in the database management system
and the corresponding apphcation programs that your company will use.
And when they build it, you will come, and you will test it, and you will say,
"It's good. Just like the real world."

But first you have to learn how to create a logical data model. That's
what this book is here to teach you.

SO WHAT IS DATA MODELING, ANYWAY?

We'll start with a quick, high-level survey of data modeling. Then we'll
get on to the hard work at hand.

If your company is at all well managed (an iffy thing in itself) ...

Let's put it another way: If your company expects to survive in the race
for the customer's dollar, top-level management must be doing some
strategic planning. That means they have to consider things like

Chapter 1

• Why the company exists
• What the future looks Uke
• Where the company wants to go
• What the company's competitive strengths and weaknesses are
• What opportunities exist for growth and profit
• What threats lurk in the shadows.

Out of this thinking come projects, priorities, projections, and targets. If,
as is usually the case, this planning is done badly or not at all, serious time
and money are wasted on failed projects—especially IT projects—and short-
Uved systems (Standish Group 1994).

The problem is to integrate enterprise strategic planning with systems
development and database design (Finkelstein 1992: 3). If this is done,
what we have is one or more strategic information systems. The goal of
this integration is to ensure that the systems we build will provide direct
support for management decision making. And the way we do that is to draw
effectively and systematically on management's business knowledge and IT
people's systems knowledge.

A word of warning: Even when corporate planning is done with a
reasonable degree of sophistication—which means developing business
models—too often it turns out to be a mere exercise. It enhances
management's feelings of control, but produces nothing substantive: no
priorities, no implementation, no continuing interest. We're talking
management commitment here, and management willpower. How often
do you find that?

Enterprise strategic planning means doing strategic, tactical, and
process/operational modeling so that priority operational systems can be
implemented long before all the modeling is completed. In other words, if
you do your modeling right, you can be completing one project while
another is still in the planning stage.

Our modeling approach is called Information Engineering (IE). IE uses
subject matter experts like you to analyze, design, and develop systems from
the business side. If you do your part right, you can be sure that the plans
match the needs and that the systems as built match the plans. Guess how
much money that saves.

Furthermore, as the systems development process goes forward, you can
deal with the changes that inevitably occur. With IE, you get rapid feedback
so you can modify your plans on an ongoing basis.

GETTING STARTED 5

A more specific term for what you're doing is Enterprise Engineering,
sometimes called "business-driven Information Engineering." EE is where
the business side meets IT. It is a methodology for active collaboration
between business and IT during project development. When business people
and IT people know how to work together, the result is faster development
and higher quality.

In the process of working up your data model, you will develop close ties
with both the business-side users and the systems development team—the IT
people. Your data model, reflecting the users' information requirements, will
let the people in the business group communicate effectively with one
another and with the database people during implementation.

Following the methodology outlined in this book, here's what you will
do:

1. Collect planning statements and build formal Business Statements for
your project area.

2. Identify the entities that represent the information you use and collect
in that area.

3. Define the associations between the entities that you've identified.
4. Define the attributes that identify and describe information items.
5. Develop a data map.
6. All along the way, identify and correct errors in the logical data model.
7. Apply the rules of business normalization to the data model. If you

build the logical data model correctly from the start, you may not need
to worry much about business normalization: the completed logical
data model will akeady be properly normalized.

Once all those things are done, you are in a position to work with the IT
people to implement the data model as a database on any appropriate
hardware or software platform:

• Entities will be implemented as records or tables.
• Attributes of the entities will be implemented as columns in a table.
• Associations between entities will be implemented as tables joined

by common keys.

Be forewarned: there will be differences between your model and the
actual, physical database. For example, some of your logical entities may
become two or more physical tables, and the physical key structure may vary
from the logical key structure. But that's why the Database Administrator
(DBA) is there: to handle the inevitable differences.

Chapter 1

NEW NOTIONS

subject matter expert, data modeling, logical data model, strategic
information systems. Information Engineering, Enterprise Engineering

1. COLLECTING PLANNING STATEMENTS

Your first task is to assemble all the information you can about the
expectations, goals, directives, and rules that govern your project area.
You'll find this information called many different things, like "mission
statement," "policy," or just "what we do around here." But once you get
your hands on it, it becomes a collection of planning statements: clear,
well-structured (we hope) statements of intentions, requirements, and
relationships.

To prepare you for this part of the process, we're going to discuss two
things:

• What you're looking for, and why
• Where to look for it, and how.

Note: You don't have to collect all the relevant planning statements
before you proceed to the next step in the data modeling process. In fact,
as you develop your data model, you will inevitably have to seek out
statements that are necessary but missing. You may even have to invent
them as a logical consequence of what you've learned.

1.1 Kinds of modeling and flavors of statement

Business planning is often done formally, but it is seldom done
comprehensively. Minor projects may get funded, while important projects
get ignored. Efforts in different parts of the organization may be duplicated
or inconsistent. Data collected locally may be useful locally but may not
communicate well across divisional boundaries.

Enterprise Engineering looks at business planning as a consistent,
comprehensive, continuing process that starts at the top and works down.
From this viewpoint, there are three kinds or levels of modeling:

• Strategic modeling, at the enterprise (company) level
• Tactical modeling, at the division or department level

GETTING STARTED

• Process or operational modeling, at the systems level.

Modeling at different levels depends on planning statements at different
levels of specificity. Below, we've identified twenty-one flavors of
statement^ and arranged them in three sets, according to the different kinds
of modeling and different levels of specificity. Realize that

• You can add more statement flavors if you really need to.
• You will probably use only a few of these flavors on your project.
• A particular flavor is not really restricted to a particular level of

specificity. You may want to assign a statement flavor to a different
level.

1.1.1 Strategic modeling

Strategic modeling discovers what areas of the business need to be
developed if the company is going to implement its corporate strategy.

Here are the seven flavors of strategic planning statement. Each answers
a particular kind of question. "Vision" and "Mission" are well known, but a
considered strategic plan will spell out assumptions as well.

You may be familiar with the last four as SWOT—^used for situation
analysis—or as WOTS-UP: Weaknesses, Opportunities, Threats, Strengths
Underlying Planning. Weaknesses and strengths are internal to the
organization, while opportunities and threats are external.

Flavor
Vision

Question
What do you see as
the ultimate result of
the enterprise's
efforts?

Example
"The Houston Community College
System will be an integral part of the
social, economic and educational life
of the community through quality
partnerships and responsiveness to
community needs."^

Or, more correctly, we've borrowed them from Visible Systems Corporation, which uses
them with its Visible Advantage enterprise modeling tool.

Mission and Plan, 2000-2003 (April 26, 2000), Houston Community College System,
http://www.hccs.edu/system/admin/mission20.html.

Chapter 1

Flavor
Assumption

Mission

Strength

Weakness

Question
What conditions,
necessary for the
ongoing functioning
of the enterprise, do
you assume will
continue into the
foreseeable future?

What have you
committed the
enterprise to
accomplishing?

What resources,
circumstances, and
qualities give the
enterprise an
advantage in
accomplishing its
mission?

What does a
successful effort
require that may not

Example
"We are assuming 20,500 members
by the end of this year. We are
estimating that 18,450 members will
pay an additional $25 in 2000."^

"NOAA's mission is to describe and
predict changes in the Earth's
environment, and conserve and
wisely manage the Nation's coastal
and marine resources."^

"This interdisciplinary approach, in
which faculty and researchers from
various academic fields form teams
to conduct research, ... places
Carnegie Mellon in a strong position
for the future when collaboration
among various fields will be key to
solving the most difficult research
problems."^

"Lack of cohesion amongst Fellows
and a perception that the College
leadership is unrepresentative of the

"Budget Assumption to Support the Year 2000 Operating Plan," 2001-2004 Strategic
Plan, Public Relations Society of America,
http://www.prsa.org/_Aboutystrategy/budget.asp?ident=strat3.

Strategic Plan: A Vision for 2005 (September 1998), p. 1, Office of Strategic Planning,
National Oceanic and Atmospheric Administration,
http://www.osp.noaa.gov/docs/NOAA_current_Strategic_Plan.pdf.

"Cross-disciplinary Research" [1995], Carnegie Mellon Strategic Planning, Carnegie
Mellon University,
http://www.cmu.edu/splan/PlanProc/CrossDiscPrograms/CrossDiscplRsch.html.

GETTING STARTED

Flavor

Opportunity

Threat

Question
be available or that
you may not be able
to provide?

What opportunities
exist for advancing
the enterprise?

What external forces
or circumstances exist
that threaten to hinder
the success of the
enterprise?

Example
broader Fellowship are leading to
disunity."^

"Use of emerging technologies
provides ACHP with the opportunity
to expand dramatically the audience
it reaches."^

"The physician's time will become
an increasingly scarce resource as
more elements are added to the
clinical encounter (e.g., discussions
on advanced directives, prevention,
safety), additional administrative
tasks are expected (e.g., increased
documentation requirements), and
requirements for recertification
become more extensive (e.g.
Continuous Professional
Development - CPD)."^

1.1.2 Tactical modeling

Tactical modeling identifies necessary operational systems, functional
areas, or general project areas. Priorities for development are set at the
tactical level.

Tactical modeling statements are more specific than strategic modeling
statements, because they define directions at a lower organizational level.

^ Strategic Plan 1996-2000, Royal Australian and New Zealand College of Psychiatrists,
http://www.ranzcp.0rg/college/strategy.htm#7.

^ Six-Year Strategic Plan, adopted 1997, amended November 2000, Advisory Council on
Historic Preservation, http://www.achp.gov/plan.html.

^ "Environmental Assessment: 2002-2007," Strategic Plan - Fiscal Years 2002-05,
American College of Physicians - American Society of Internal Medicine,
http://www.acponline.org/strategic/tando.htm.

10 Chapter 1

Often, they are presented as elaborations of specific statements in the
strategic plan.

The seven flavors of tactical statement are often hard to sort out. In
practice, the terms "Goal" and "Objective" are often treated as synonyms or
as parent and child: goals are realized by meeting a number of objectives, or
vice versa. "Goal," "Objective," "Critical Success Factor," and "Strategy"
may be used at the strategic level, while pohcy statements and tasks will be
found at the process/operational level.

Flavor
Goal

Strategy

Critical
Success
Factor

Question
What do you want to
accomplish (at the level
of functional area)? What
change do you want to
effect?

How do you propose to
accomplish those goals?
What alternative
strategies exist?

What must you achieve if
you expect to succeed?
What will kill the project
if you fail to achieve it?
What measures will you
use to determine success
or failure?

Example
"It is the overall goal of EPA
Region III to maintain a high state
of emergency readiness and to
respond immediately and
effectively to all environmental
emergencies which warrant an
EPA presence."^

"Improve the employee evaluation
process and examine appropriate
compensation for staff via a
classification modernization
study."^^

• "Obtain computing capabilities
of2(.2)TFLOPS.

• "Move from top 50 to top 25 in
Academic High-Performance
Computing."^^

Tactical Plan for Responding to Major Oil Spills (August 2000; rev. August 2001), U. S.
Coast Guard, http://www.uscg.mil/lantarea/rrt/rcp/Admin/Tacticalindex.html.

"Goal 3: Professional Development," Service and Stewardship 2001-2005, Ohio
Department of Natural Resources, http://www.dnr.state.oh.us/parks/ss/goals/goal-3.htm.

Strategic Plan, IT Division, High Performance Computer Center, Texas Tech University,
September 11, 2003, http://www.infotech.ttu.edu/strat/hpccsp.html.

GETTING STARTED 11

Flavor
Objective

Policy

Tactic

Task

Question
What milestones have
you set for measuring
your progress toward
your goal?

What rules of practice
(i.e., rules for decision
making) must be
followed in the
operations of the
enterprise as a matter of
course?

What methods are you
going to use to advance
toward your goal? When
and how are you going to
apply them?

What actions will you
take to achieve specific
goals?

Example
"To develop undergraduate
specialization in Entrepreneurship
(additional to B.Sc. requirement)
with Venture Development Center
(VDC)."'2

"Computing & Networking
Services will monitor in real-time,
backbone network traffic, as
necessary and appropriate, for the
detection of unauthorized activity
and intrusion attempts."^^

"CRT will seek out opportunities
at appropriate trade shows and
conferences for representatives of
the U.S. Commission to speak."̂ "̂

"Formulate and present to the
North Central Accreditation
Agency a proposal on standards
for quality library media
programs."^^

"First Year Tactical Plan," Designing Our Future: Vision Review & Strategic Plan
Enhancement (November 1996), Faculty of Engineering, University of Calgary,
http://wwv^.eng.ucalgary.ca/design.htm#firsttarget.

"Network Security Policy," Computer Security Administration (December 2000),
Computer and Networking Services, University of Toronto,
http://www.utoronto.ca/security/policy/.

"Tactical Program," National Plan for the Centennial of Flight Commemoration
(November 2001), U. S. Centennial of Flight Commission,
http://www.centennialofflight.gov/commission/natl_plan/Appendix3_3_l.htm.

Futures Strategic Plan of Action (no date), Michigan Association for Media in Education,
http://www.mame.gen.mi.us/organiz/futures.html.

12 Chapter 1

1.1.3 Process/Operational Modeling

The last seven flavors apply to statements written during process
modeling or operational modeling. You will recognize them if you've ever
participated in a business process re-engineering or systems implementation
project. On the operational level, issue management systems are
commonplace, and business events are identified in procedures and user
manuals.

As for "business rules," they're all over the place, but they are usually
collected and identified as such only during a modeling project. They state
what the people who know the business know: how work gets done and why
it is done that way. Companies that have done thorough strategic and tactical
modeling may have formal systems for managing business rules, so that
changes can be migrated to the data models and the systems that are based
on those models.

Flavor
Business
event

System
event

Question
What events, external to
the functional area,
trigger action in the
functional area?

What events, built into
the manual or
automated system,
trigger action in the
system or in functional
areas external to the
system?

Example
"User

1. Contact the ACS Help Desk to
report the problem.'"^

"Before Allocation is run, the
system sets the Reporting
REPORT DISPLAY DATE to the
last day of the prior accounting
period."^'

Problem Management Guidelines and Procedures (November 1994), p. 5, Riyad Bank,
Riyadh, Saudi Arabia.

^̂ System Administration Guide, General Ledger System (November 1994), p. 22, Riyad
Bank, Riyadh, Saudi Arabia.

GETTING STARTED 13

Flavor
System
requirement

System
design
objective

Business
rule

Question
What characteristics
must the system have in
order for it to perform
the required functions
under the given
circumstances?

What functions must
the system be designed
to perform? What tests
must we apply to
confirm that the system
performs those
functions?

What relationships must
exist within the
enterprise in order for
work to get done in a
structured manner?

Example
"Monitoring and Maintenance
activities shall be done distributed
at NOS level."^^

"Every chassis [must] operate
within an ambient temperature
range of 0° to 55°C with a
maximum internal temperature
rise of 20°C, when populated with
enough cards to fully load the
installed power supplies."^^

"Renter and each Additional
Authorized Operator must be
present to sign Rental Agreement,
present an acceptable credit card
(debit cards not acceptable) or
current round-trip ticket (air, train
or bus), show vaUd driver's
hcense, and must be a minimum
of 25 years of age."^^

"Layout of the HSTN," Design of a Hybrid Satellite-Terrestrial Network (HST), ENSE
623, ENPM 643 System Engineering Design Project, University of Maryland,
http://www.isr.unid.edu/Courses/ENSE623/DirecPC/layout.html.

Designing Industrial Computing Solutions for Optimal Cooling and Airflow (no date), p.
2, Kontron/ICS Advent, http://www.kontron.com/techlib/whitepapers/5004.pdf.

''Authorized and Additional Authorized Operators," Qualifications and Requirements,
Before You Rent, Hertz, http://www.hertz.com/.

14 Chapter 1

Flavor
Issue for
resolution

System
design goal

Question
What questions need to
be answered? What
problems need to be
solved?

Taken as a whole, what
is the system supposed
to do?

Example
"Applications may fail with an
access denied message from the
services after successful
installation of Pervasive.SQL
Windows Server to a local
drive."^^

"The design goal for the SVE
system was to extract a total
volume of soil vapor equal to 500
pore volumes from beneath the
site within 30 years."^^

YOU ARE HERE

Or so we'll assume. Your concerns are probably at the tactical and
process levels. Your area has been identified as a priority operational area
for development. You know what planning statements look like, and you're
ready to start collecting them.

But where to look?

1.2 Discovering planning statements

There are generally three places to look for planning statements:

• Documents
• Systems
• People.

And the greatest of these is people. But first, a few rules:

Knowledge Base, Pervasive Software, March 2001,
http://support.pervasive.com/eSupport/publisher.asp?id=96ed7bb3-195f-lld5-b230-
00508b5d6b61.

Soil Vapor Extraction at the Seymour Recycling Corporation Superfund Site, Seymour,
Indiana (no date). Federal Remediation Technologies Roundtable,
http://bigisland.ttclients.com/frtr/00000128.html.

GETTING STARTED 15

1. Test every statement against reality—that is, against actual
practice or reasonable expectation. The way people work is often at
odds with the way they're supposed to work. And management has a
way of blowing smoke.

2. Test statements for clarity, consistency, and testability. Vague
statements are untestable. For details, see the standard in Section 1.5.

3. Make sure your information is up-to-date. Documents, especially,
get real old real fast.

4. Understand exactly what you are discovering:
a) The way things actually are, OR
b) The way somebody thinks things should be, OR
c) The way things are going to be in the future.

1.2.1 Documents

One thing to remember about documents: most of the time they're
written by and for other people. That means the planning statements they
contain aren't in your language and aren't written for your purposes. As you
develop your data model, you're going to have to rewrite, collate,
consohdate—in short, you're going to have to make the statements your
own.

1.2.1.1 Strategic

The best documents for data modeling are those that come from within
your company. Those most relevant to strategic planning generally originate
with senior management. Many of them are concerned with defining
relationships between the company and important external audiences:

• Shareholders
• Clients and customers, current and prospective
• Vendors
• Government
• Community.

Other documents result from formal planning efforts or record corporate
decision-making. Some address broad internal audiences, like middle
management or workers.

Flavor Set 1: Strategic
Vision
Assumption
Mission

Documents
Strategic plans, corporate websites, shareholder
documents, capabilities documents, employee
indoctrination documents, intranet home page.

16 Chapter 1

Strength
Weakness
Opportunity
Threat

community relations documents, forecasts,
marketing studies, situation analysis reports.
budgets, corporate minutes

1.2.1.2 Tactical

Documents relevant to tactical modeling exist on the corporate division
or department level. They reflect the planning, organization, and assessment
of work. They record the responses of middle management to the directions
set at higher levels.

Flavor Set 2: Tactical
Goal
Strategy
Critical Success Factor
Objective
Policy
Tactic
Task

Documents
Business plans, requests for proposal, proposals.
scopes/statements of work, forecasts.
performance reports, minutes, organization
charts, budgets, policy manuals, management
directives, performance standards, job
descriptions, delegations of authority, charts of
accounts, project schedules, audit reports.
tactical plans

1.2.1.3 Process/Operational

Documents on the process/operational level generally fall into three
broad categories:

• Those that say what should occur: procedures, manuals, training
materials, contracts

• Those that say what did occur: transaction files, reports, studies,
knowledge base

• Those that are generated in the course of systems development,
present or past.

GETTING STARTED 17

Flavor Set 3:
Process/Operational
Business event
System event
System requirement
System design objective
Business rule
Issue for resolution
System design goal

Documents

Functional requirements, system design
documents, standard operating procedures,
knowledge base, issue resolution reports,
financial reports, performance reports, staff
studies, historical reports, transaction files,
master reference files, white papers, user
manuals, training documents, case studies,
contracts, user manuals, reference manuals

1.2.1.4 External documents

Compared with internal documents, external documents like textbooks,
journal articles, and the sales materials of competitors are much less relevant
to your purposes. But there are a few exceptions:

• Industry standards and best practices for your area's processes
• Industry data models and data specifications—for example, the

Petroleum Industry Data Model, http://www.ppdm.org/index.html,
and the Art Museum Image Consortium data specification,
http://www.amico.org/AMIC01ibrary/dataspec.html

• Published data models for common business functions like
accounting, HR, ordering, shipping, work orders, and the like^^

• Planning documents from organizations like your own.

These documents can suggest planning statements that may exist in your
own functional area. They can speed up your effort by providing templates
that you can adapt and apply. They can help you meet quality standards and
make subsequent modeling projects easier.

If you are installing an ERP system (not the subject of this book), you
will deal extensively with the ERP system's physical database.

1.2.2 Systems

Systems are organized ways of getting work done. Usually, they combine
manual, mechanical, and automated processes. The manual component—the

See, for example, Silverston 2001.

18 Chapter 1

human factor—is defined in documents like Standard Operating Procedures.
As for the rest, you'll find them in three places:

1. In your own functional area
2. In other functional areas in your company
3. In other organizations.

Start by asking yourself: What systems and system components already
exist for doing the work of my area? Some of them may be so familiar as to
be almost invisible: telephone, copy machine, computer workstations, office
automation software, the company intranet. Others might not normally occur
to you when you think about "systems": office or shop floor layout,
emergency warning systems, splash showers. If it's functional, and if it's
within your scope of work, you can probably start there and work backward
to a policy, business event, or business rule.

If a database system has already been implemented in your area, the
project documents may not have been thrown out. There you should find the
system's logical and physical data models, which can be mined for useful
information like entity and attribute names and specifications. Whether or
not you're so lucky, nonetheless you have the user interface and outputs, and
you may want to look at change, issue, and problem reports.

Some other area of your organization may have implemented a similar
database. If so, you can draw on that system's implementation, user, and
reference documents and on the users' experience. There are also databases
in other organizations. Vendors and business partners may be able to help
here. As long as you respect the other fellow's need for confidentiality, you
may be able to get useful ideas about how to tackle your own problems.

And then there's the gold mine. In one organization with which we
consulted, management had built a database to mine the metadata (the data
about data) from all existing company databases. Every night, every
database reported back on its physical tables, associations, and attributes.

1.2.3 People

In data modeling, people are much more than subject matter experts and
sources of planning statements. They are the users of the database and the
systems that will draw on it. If they aren't made an active part of the
planning, they won't have confidence in the result or confidence in you. By
involving them in the planning process, by leading them through

GETTING STARTED 19

development of the logical data model, you give them what they will need
for communicating with the technical people.

The core event here is the data modeling session: you, an experienced
data modeler, and a few users doping out the information structure on the
whiteboard. Here's a quick sketch of the process:

1. You'll identify the groups you need to talk with. Sessions work best with
two, three, or four people who perform the same or similar business
functions.

2. You'll prepare yourself intellectually and psychologically. You'll learn
as much as you can about the functional area and the methods of data
modeling. You'll meet the people you'll be working with, find out about
them, develop a rapport. You'll put yourself in "listening mode."

3. You'll announce the sessions: why they're being held and what will be
on the agenda. But you may want to ask each participant to prepare a job
description, emphasizing responsibilities, duties, tasks, and interfaces
with people and systems inside and outside the business area.

4. In the initial session with each group, you'll tell them about data
modeling and its role in the project. You'll make it brief and high-level—
the analogy with a blueprint works well—and then you'll get to work,
asking questions, listening, and sketching out the entities and
associations on the whiteboard. After an hour or less, you'll send the
folks home with thanks. Then you'll transcribe everything you learned
and everything you wrote on the whiteboard.

5. You'll conduct extra sessions if you need them. Otherwise, you'll
interview individual participants as necessary to clarify details.

6. You'll call one or more larger, follow-up meetings to present your draft
data map and get feedback. You'll want to bring the participants from
three or four groups together, so they can see how their work fits together
in the data model.

You're probably wondering what questions you'll ask in the sessions.
Don't worry. By the time you've worked through this book, you'll know.

In a perfect world, if you were building the big database in the sky and
had unUmited resources, you would begin by holding sessions with vice
presidents. Your resulting data model would reflect the organization at the
strategic level.

20 Chapter 1

Next, you would perform a technique called clustering (Finkelstein 1992:
424-437; Reingruber and Gregory 1994: 41-44), which breaks down the
strategic level model into tactical areas like, for example, personnel and
manufacturing. Then you would hold sessions with the directors and
managers whose responsibihties relate to each individual cluster, to build
tactical models.

When you finished modeling one tactical cluster, you could then start
modeling a different tactical cluster or priority operational areas within the
first cluster. A database for one area could be under development while
tactical modeling proceeded on another cluster.

Nice job if you can get it.

13 New notions

planning statement, strategic modeling, tactical modeling, process modeling,
operational modeling, vision, assumption, mission, strength, weakness,
opportunity, threat, goal, strategy, critical success factor, objective, policy,
tactic, task, business event, system event, system requirement, system design
objective, business rule, issue for resolution, system design goal, data
modeling session

1.4 Exercise: List your planning statements

This is a simple but very useful exercise, best done in a word processing
document:

1. Write down each planning statement, one after another, in a list. No
duplicates, of course.

2. If a statement asserts more than one thing, break it up into separate
statements.

3. Put the statements in an approximate order. Try to place the broadest
statements first, the more detailed ones below, but keep related
statements together.

4. If two statements seem to be saying the same thing, but in different
words, put them together and tag them for further consideration.

5. If you see any inconsistencies, tag them, and be sure to note where the
conflicting statements came from.

GETTING STARTED 21

1.5 Standard for planning statements

L Each statement must describe the business, not the database.
2. Each statement must express one and only one fact.
3. Each statement must be unambiguous: it cannot be misunderstood.
4. Each statement must include any conditions necessary for it to be true.
5. Each statement must be properly grammatical.
6. Each statement must be in the active voice and use an action verb.
7. Each statement must use terms that are standard in your business or in

the industry.
8. Terms must be used consistently throughout the entire set of

statements:
a) A word must not be used in one sense in one statement and another

sense in another.
b) Two different words must not be used to represent the same thing or

idea.

2. WRITING FORMAL BUSINESS STATEMENTS

Notice: You don't have to collect all the relevant planning statements
before you start writing Business Statements.

Now you've collected your planning statements, you've written them
down in good form, and you've developed "inside" knowledge about the
area you're modeling. There's more rewriting to be done, though. To make
them optimally useful for data modeling, you'll need to recast them as
formal Business Statements.

Business Statements describe

• objects of interest—almost anything indicated by a noun, any
category that we want to capture and keep information about:

o Persons (not proper names, but job titles or roles)
o Places
o Things
o Events
o Concepts

• characteristics (attributes) of those persons, places, things, events,
and concepts

22 Chapter 1

• properties of those characteristics
• associations of persons, places, things, events, and concepts with

other persons, places, things, events, and concepts
• characteristics of those associations.

Business Statements follow a stricter standard than garden variety
planning statements. In particular, a Business Statement

• uses a limited vocabulary and a limited grammar: certain words or
phrases and only certain sentence structures

• is of one flavor only—^usually, a business rule.

Collected together, your Business Statements

• comprise a formal record of the your area's knowledge
• demonstrate that all parties—you, the users, and senior

management—are in agreement
• let you model the system: most Business Statements become parts of

the logical data model
• let you assess the system once it's built.

To look ahead: There will be a mapping between each Business
Statement and a part of the logical data model.

Let's look at some sample Business Statements:

• Each STUDENT may register for zero, one, or many CLASS
SECTIONS.

• STUDENT has the following subtypes: UNDERGRADUATE
STUDENT, GRADUATE STUDENT.

• Each STUDENT has a unique student-identifier.

As with good planning statements in general,

• The sentences are all in active voice, not passive: "Each
STUDENT" does something, is something, has something.

• The verbs are all in the present tense. (Statements of intention would
use verbs in future tense: "Each STUDENT will eventually declare
one or many MAJORs.")

• Each time the same thing is referred to, we use the same name. A
STUDENT is always a STUDENT, not a PUPIL in one statement
and a STUDENT in another.

• The statements are unambiguous: you can't misinterpret them.
• They are all consistent with each other.

We can easily see some other characteristics of these statements:

GETTING STARTED 23

• The names of objects of interest are CAPITALIZED.
• The first word of most statements is "Each." (This will help us to

define how our objects of interest relate to each other.)
• Each statement is of only one flavor. The first statement describes a

business event. The other two statements are business rules.

2.1 Standard Forms

Following are seven Standard Formŝ "* of Business Statement. They don't
cover all possibilities, but they are the most immediately useful ones. Feel
free to develop your own standard forms, but keep the number reasonable.

2.1.1 Standard Form I: The Basic Form

Each Tl
must
may

will eventually
<association> <quantity> T2,

where

• Tl and T2 identify objects of interest,
• <association> is a verb like "be," ''have," ''become, " or almost

any action verb.
• <quantity> is one of the following:

o "one or many''
o "zero or one''
o "zero, one, or many"
o "one and only one. "

In this abstract form, the statement reads: "Each instance of the object of
interest may or must or will eventually have this kind of association with this
amount of another object of interest." (An instance is one of the set, hke
Annette is one of the Dionne quintuplets.)

Let's take an example. We have a business rule that says, "Instructors
will teach at least one but no more than 100 students in a semester." We can

^̂ The way these Standard Forms are presented is not standard across data modeling practice.
We've adopted this presentation because it's quick to learn and easy to use.

24 Chapter 1

capture some of this knowledge in an unambiguous form by using Standard
Form I:

"Each INSTRUCTOR must teach one or many STUDENTS."

In this statement,

• Tl = INSTRUCTOR
• T2 = STUDENT
• modal verb = "must"
• association = "teach"
• quantity = "one or many."

And our statement is testable: if we find an instructor who teaches no
students, either the statement is wrong or that person isn't an instructor.

Notice one thing about phrasing:

• If we say that an instructor must teach, we say that he or she teaches
one or more students.

• If, on the other hand, we said that the instructor may teach, we
would have said that the instructor teaches zero, one, or many
students. Our phrasing might be redundant, but it certainly can't be
misunderstood.

2.1.2 Standard Form II: Subtypes

Tl has the following subtypes: STl, ST2, ..., STn.

where STl, 372, etc, are subtypes (classification groups) ofTl, the object of
interest.

Another way of putting it:

Each Tl is
one and only one

one or more
of the following subtypes: ST I ST2, ..

STn,

Obviously, there have to be at least two STs. Otherwise, you don't have
subtypes.

Here's an example of Standard Form II:

"CHANGE has the following subtypes: SIMPLE CHANGE,
MODERATE CHANGE, MAJOR CHANGE."

In this case, an individual change can be of only one subtype. It can be a
simple change, or it can be a moderate change, or it can be a major change.

GETTING STARTED 25

But it can't be both a simple change and a moderate change. And a simple
change can never become a moderate change, or vice versa.

Sometimes, though, we have a different situation:

"DISH has the following subtypes: APPETIZER, SALAD, ENTREE,
SIDE DISH, DESSERT."

To clarify this situation, we need to add one or more statements in
Standard Form III.

2.1.3 Standard Form III: Roles

Each STn may
must

also be a STm at the same time.

where STm and STn are both subtypes ofTL

Read it like this: "Each instance of this subtype may or must also be an
instance of that other subtype at the same time."

Let's look at our Standard Form II example again:

"DISH has the following subtypes: APPETIZER, SALAD, ENTREE,
SIDE DISH, DESSERT."

To clarify, we add a statement of Standard Form III:

"Each APPETIZER may also be an ENTREE at the same time."

For example, you can serve quiche as an appetizer or as the main dish.

Note these details:

• We said "may," not "must," because some appetizers, like olives,
won't be used as the entree.

• To clarify our Standard Form II statement adequately, we'd have to
add more Standard Form III statements, like "Each SALAD may
also be an ENTREE at the same time."

Variants

In our example, the phrase "at the same time" doesn't mean "in the same
meal." It just means that our DISH (quiche) doesn't have to cease being
served as an appetizer in order to be promoted to entree-hood. So we might
want to write our statement like this:

"Each APPETIZER may also serve as an ENTREE."

26 Chapter 1

As long as the statement is unambiguous and testable, and APPETIZER
and ENTREE are both subtypes of DISH, we've got a useful statement.

We might want to expand our Standard Form III like this:

"Each APPETIZER may also be a SALAD, ENTREE, or SIDE DISH at
the same time."

This is useful for completeness' sake, though, in fact, a good bit of this
information will drop out at data modeling time.

2.1.4 Standard Form IV: Becoming

Each STm may eventually become a STn,

where STm and STn are both subtypes ofTL

In other words, "Each instance of this subtype may eventually become an
instance of that other subtype." Like Standard Form III, Standard Form IV is
used to clarify a Standard Form II (subtypes) statement.

Let's make up some good examples:

Standard Form II
"HUMAN BEING has the following
subtypes: CHILD, ADULT."

"UNION MEMBER has the
following subtypes: APPRENTICE,
JOURNEYMAN, MASTER."

Standard Form IV
"Each CHILD may eventually
become an ADULT."

"Each APPRENTICE may
eventually become a
JOURNEYMAN."

"Each JOURNEYMAN may
eventually become a MASTER."

Notice that in the second example we don't have an apprentice becoming
a master, even though every master was once an apprentice. That's because
union policy requires every apprentice to become a journeyman before he or
she can qualify as a master.

2.1.5 Standard Form V: Recursion

Each Tl
must
may

will eventually
<association> <quantity> TL

GETTING STARTED 27

where

• Tl identifies an object of interest.
• <association> is a verb like ''bey " "have," ''become, " or almost

any action verb.
• <quantity> is one of the following:

o "zero or one"
o "one or many"
o "zero, one, or many"
o "one and only one."

Standard Form V is not the same as Standard Form I. Here, each instance
of our object is associated with zero, one, or many instances of the same
object.

For example,

• "Each TRAINER may train zero, one, or many TRAINERs."
• "Each SHARE will eventually become zero, one, or many

SHARES." (That's what happens in a stock buyback or a stock
split.)

2.1.6 Standard Form VI: Characteristics

Each Tl has the exactly zero or one of the following characteristics: CI, C2,
..., Cn.

where Tl is the object of interest.

When we use Standard Form VI statements for data modeling, we'll refer
to "attributes" instead of "characteristics." But "characteristics" is good
enough for now.

Let's look at an example:

"Each ARTWORK has exactly zero or one of each of the following
characteristics:

o artwork-accession-number
o artwork-artist
o artwork-date
o artwork-descriptor
o artwork-genre
o artwork-location
o artwork-number

28 Chapter 1

o artwork-relationship
o artwork-subject
o artwork-title."

Notice: Depending on the data modeling technique, characteristics are
often presented as hyphenated suffixes to the object name and are often
written in lower case.

2.1.7 Standard Form VII: Properties

CI has the following properties: Ply P2, ..., Pn,

where CI is a defined characteristic ofTl, the object of interest.

As if it weren't obvious: a property is a characteristic of a characteristic.

Example:

"The characteristic artwork-descriptor has the following properties:
o A term used for grouping artworks
o Maximum 30 alphanumeric characters
o Not unique
o May repeat (maximum 5 times)
o May be null
o No default value."

2.2 The Standard Forms in action

Let's apply these Standard Forms to a strategic statement:

We hire employees who presently have none of our skills, but we will
train them. Each employee must have demonstrated an ability to be
trained, however. We must have at least one employee, but we need
many for each skill. (Finkelstein 1992: 45)

We'll do a quick rewrite before we do our Business Statements:

• An employee may have none of our skills initially.
• We will train new employees in our skills.
• The employee must be trainable.
• For each of our skills, we need at least one employee who has that

skill.
• Every skill will eventually have many employees exercising it.

GETTING STARTED 29

Notice that there are some questions that remain unanswered. For example,
how does an employee demonstrate trainability? The strategic statement,
predictably, will require further analysis. That's the real world, folks.

From our rewrite, we can come up with the following Business
Statements:

• Each EMPLOYEE may have zero, one, or many SKILLs.
• Each EMPLOYEE will eventually have one or many SKILLs.
• Each SKILL must be held by one or many EMPLOYEES.

Note that all three statements follow Standard Form L Also, each statement
is of a single flavor. They are policy statements (Flavor Set 2), which derive
from strategic statements.

Here's a quick look ahead:

EMPLOYEE >|—o|< SKILL

This is the first bit of the data map: "Many EMPLOYEES will eventually be
associated with one or many SKILLs." In the reverse direction: "Each
SKILL must be held by at least one EMPLOYEE." That's what the notation
says. We'll get into that later.

Now let's do a Business Statement in Standard Form VL

"Each EMPLOYEE has exactly zero or one of each of the following
characteristics:

o employee-number
o employee-name
o employee-hire-date
o employee-pay-rate."

Finally, let's use Standard Form VIL

"The characteristic employee-number has the following properties:
o employee-number is a five digit base ten numeric field, unique

to each individual.
o An employee-number is never assigned to more than one

individual.
o Each employee will always have the same employee-number,

even if he goes away and comes back several times."

Notice how close we're approaching to defining a database.

30 Chapter 1

2.3 New notions

Business Statement, Standard Form

2.4 Exercise: Rewrite your planning statements as Business
Statements

You have your list of planning statements from Step 1. Now rewrite as
many as you can according to the Standard Forms.

1. Divide planning statements into multiple Business Statements as
necessary.

2. If you can't manage to rewrite one, skip it and go on to the next.
3. Gather more information as necessary.
4. Note any issues for further inquiry.

By the time you've worked through the list, you will have

• added statements to your Hst.
• added depth and detail to your understanding.
• started thinking about planning statements in Business Statement

terms.

Chapter 2

THE ART GALLERY WEB: A DATA MODELING
EXAMPLE
Wherein Dr. Pangloss sets out to build his dream web

"Over the years, [Dr. Pangloss tells us,] I've visited lots of art museums,
and at every one I bought slides and postcards of the artworks. I've scanned
these items and incorporated them into a web that I like to share with my
friends via CD-ROM. I dream of someday putting this web up on a secure
website for educational purposes, but for right now I'd just like to create a
database of all the information about these artworks. Then, when I actually
have a website, I could arrange for web pages to be created on the fly.

"I started by defining the purpose of the web."

Business Description: Art Gallery Web

1. Purpose: The purpose of the Art Gallery web is to

provide the owner's friends with access to electronic images of artworks
on CD-ROM and, in the future, on a secure Internet website.

"Then I gathered all the basic sources of information together. That was
easy. There were only two: the existing art gallery web and me, the Subject
Matter Expert. (As time went on, I regretted not having SOPs [Standard
Operating Procedures], instructions, and standards to draw on.) Using these
sources, I refined my business description by listing the web's functions."

2. Functional Description: The functions of the Art Gallery Web are to

a) display the images themselves, with identification (artist, title, date,
location, and accession number [the museum's identifying number] if

32 Chapter 2

available) and comments (optional^ with citations if necessary,
hyperlinked to item in List of Works Cited)

b) display thumbnail images that are hyperlinked to the (larger) images

c) categorize images or thumbnails by artist (with pseudonym, if
available, and dates of birth, death, and/or activity), medium, genre, era,
etc.

d) provide access to images of works by an artist via a timeline (set of
commented links)

e) provide access to portraits by an artist via a portraits index (set of
commented links)

f) provide access to images of works by an artist via an artists index

g) display two images side-by-side, for comparison

h) list the museums represented in the collection, with URL if it exists

i) provide a list of works cited in comments (authors, title, publication
date, publication location, and publisher)

j) provide a search facility (not implemented on CD-ROM)

k) provide a discussion facility (not implemented on CD-ROM)

I) describe the theory, origin, and functions of the art gallery web.

"Now I was ready to write as many business rules as I could. I didn't try
to write formal business statements. I just wanted to get ideas down on
paper. Often I included examples: they're quicker to record and more basic
than formal definitions."

3. Business Rules

a) Each artwork is identified by artist, title, date, location, and accession
number in the source collection.

b) An artwork may have no artist (= Anonymous), one artist, or more
than one artist.

c) An artwork may have no date, or the date may be generalized (e.g., ca.
1640, last quarter 15th c, 1616-1630).

d) An artwork may have no current location (e.g., location unknown,
destroyed).

THE ART GALLERY WEB: A DATA MODELING EXAMPLE 33

e) An artwork may have no accession number,

f) Each artwork may be classified according to

' artist
- genre (painting, architecture, stained glass, others)
- era (e.g., Classical Antiquity)
- origin (Africa, Nigeria, Yoruba, Court of Benin)
- current location (Kunsthistorisches Museum, Sistine Chapel)
- period style (Renaissance, baroque)
- source (Book ofKells)
- encompassing artwork (Birth of Venus, Allegory of Spring)
- group of artworks (Nine Heroes Tapestries)
- subject (Divine Comedy, madonnas)
- affinity group (Modem American Artists), etc.

g) Artist and genre are the primary categories of classification.

h) An artwork may itself contain works of art. An altar is made of
different panels, as often as not by different artists. An illuminated book
may have artistic value in itself, beyond the illuminations it contains.

i) Artwork genres include paintings, sculpture, architecture, a piece of
decorative art (jewelry, plate or cup, stained glass, tapestry), and other
(mixed media, collage).

j) An estate or a museum may be an artwork in itself

k) Each artist is identified by name, pseudonym (optional), and dates of
birth, death, or activity.

' Most artists have only a name, no pseudonym.
- Some artists are known only by pseudonym (e.g., Boucicault

Master).
- Some ''artists" are known only by association with a named artist

(Workshop ofFilippo Lippi, Follower ofRogier van der Weyden).
- For some, we have no date of birth; for some, we have no date of

death; for some we have a year or span of years in which the artist
flourished or was active.

I) An artist might also be the subject of comments from a cited work, but
this is not implemented.

34 Chapter 2

m) Each artwork has zero or one current location. That location may be
a private collection (Mrs, Virginia Kraft Payson), a museum (Louvre), an
estate (Versailles), or a building (Lenbachhaus, Palazzo Vecchio).

n) A current location is identified by country, city, and name. But it may
also be a collection in a museum, a room in a building (Chapel of
Eleanora di Toledo), a building on an estate (Petit Trianon), even a
surface (Sistine Chapel ceiling).

o) A museum or estate may have a website.

p) An artwork may have one or more comments.

q) A comment may have one or more citations (links to reference works).

r) A reference work is identified by author, title, publication date, place
of publication, and publisher. It may also have a volume number, series
name, etc.

s) Each artwork is shown in one or more images. An artwork usually has
only one image. But there may be other images of the artwork that are
different in visual quality or source, or that show the artwork in
relationship to other artworks, or that show a detail of the artwork.

t) Each image has zero or one thumbnail.

u) Each image has a filename.

v) Each thumbnail has a filename that relates it to its corresponding
image.

"As I worked on the data model, other business rules occurred to me,
and I added them to the list."

[Dr. Pangloss doesn't yet feel ready to write formal Business Statements.
But he'll get there. To be continued ...]

Chapter 3

BUILDING THE DATA MAP
Wherein we start making sense

Once we've got a reasonable number of Business Statements, we're
almost ready to start data mapping. Here's what we're going to do:

1. Identify entities
2. Define associations
3. Classify entities by flavor
4. Build the data map (first draft)
5. Define primary and foreign keys
6. Relate keys to associations
7. Validate cardinality and optionality of associations
8. Validate associations on the data map
9. Define attributes
10. Verify the data model
11. Validate the data model against the rules of normahzation
12. Revise, revise, revise.

Of course, when you get good at this stuff, a lot of these steps will collapse
into each other, and you'll be revising constantly, moving your
understanding closer and closer to reality.

1. IDENTIFY ENTITIES

Look at your Business Statements. Those words in CAPITAL LETTERS
are the names of entities: collections of things that are important to your

36 Chapter 3

company, things that (in the abstract world of data modeling) represent data
that needs to be stored for reference.

Let's get a little deeper into the definition:

1. In the real world, we use nouns to name classes, groups, or collections
of things. We use the word "cow" to designate a whole bunch of
similar animals. Similarly, in the data model for a college we can use
STUDENT as the name for students as a group—in fact, all students
who are or have ever been registered at the college.

2. If we want to identify a particular cow or student, we will often use a
proper name: "Elsie" or "Eberhard Faber.". In data modeling terms, the
individual things that make up the entity are called instances: Elsie is
an instance of "cow," and Eberhard is an instance of "student" (the
group). Each instance of an entity is unique, just as Elsie and Eberhard
are unique. And many instances make up an entity: you will never
have an entity that has just one instance for very long.

3. But the world of data modehng is a little more abstract. As an entity in
the college's data model, STUDENT represents a collection of
structured data about students, and each instance of STUDENT is a set
of particular data about a particular student: name, address, GPA, etc.̂ ^
Because our friend Eberhard is unique as a student, he is represented
as a unique instance of the data entity STUDENT.

4. If you want to get philosophical about it, an instance of STUDENT
can be said to exist only as a subset of the data defined by the data
entity STUDENT: a student can be recognized as an instance of
STUDENT only by exhibiting the attributes of the entity. This is why
a virtual student can attend classes, take exams, and even graduate (as
happened some years ago) and why a student without a student ID is
not, functionally, a student.

Notice that the name of an entity is

• a noun (i.e., the name of a person, place, thing, event, concept, etc.)
• expressed in the singular, not in the plural
• your company's term for that important thing

25 We might have applied the term "entity" to the individual persons, places, or things, and
then used the term "entity set" to designate the group, class, or genre that those "entities"
belong to. We might have done things this way. But that terminology isn't common in the
field of data modeling, so we'll stick with the more standard usage of "entity."

BUILDING THE DATA MAP 37

• unique within the data mcxlel.

In the world of data, an entity may eventually become a table in a real
information system. Its characteristics—called attributes—^then become
columns in that table. And the instances of the entity—data about real things
like people, purchase orders, or products—populate rows in that table. We
do not put actual people, purchase orders, or products into the rows of the
table. That's impossible. We put information about entities into tables.

The first thing we're going to do is create rectangles: one rectangle for
each entity. So, for example.

STUDENT

represents the entity STUDENT—^unique and unchanging—in all the
Business Statements where it occurs.

1.1 New notions

entity, instance, attribute, entity rectangle

1.2 Exercise: Create an entity roster

Here's a simple starting point:

1. List the capitaUzed nouns in all your Business Statements.
2. Write a definition for each.
3. Go back over your collection of business rules, pull out any other

nouns that might represent entities, and list them.
4. Beside each one, if it doesn't look like an entity, explain why it isn't

an entity.
5. If you find a new entity, write one or more appropriate Business

Statements for it.
6. Save the lists, definitions, and explanations in your project folder.

Congratulations! You now have a basic entity roster, you have clarified your
thinking about the problem, and you have a record of that thinking:
something that you will find useful to refer to later on, as you revise the data
model.

38 Chapter 3

2. DEFINE ASSOCIATIONS

When all the entity rectangles are strung together with the proper kinds
of associations, the result is a data map. A data map is like an organization
chart for information. It shows the structure of data in the functional area.

Here are two general rules for associations:

• A connection between two entities is always meaningful. The
different possible meanings are shown, according to data mapping
conventions, by different kinds of connectors.

• No entity is an island. Each rectangle must be connected to at least
one other rectangle on the map—which is to say, every entity must
have at least one association with another entity in the data model.

Now let's look at the basic connections:

<

> — <

These are also called association lines. The first means one-to-one, the
second means one-to-many, and the third means many-to-many.

So, if we see this—

—we read it as "Each instance of SUPPLIER relates to one and only one
instance of REPRESENTATIVE, and vice versa."

If we see this-

SUPPLIER -4 REPRESENTATIVE

—we read it as "Each instance of SUPPLIER relates to one or more
instances of REPRESENTATIVE." Or, if we read from right to left: "Each
instance of REPRESENTATIVE relates to exactly one instance of
SUPPLIER."

Finally, if we see this—

BUILDING THE DATA MAP 39

SUPPLIER ^ 4 REPRESENTATIVE

—we read it as "Each instance of SUPPLIER relates to one or more
instances of REPRESENTATIVE, and each instance of
REPRESENTATIVE relates to one or more instances of SUPPLIER."

These are the only three kinds of connection that are allowed. However,
you may have occasion to use a connector like this:

SUPPLIER fp
This indicates a recursive association. In other words, "Each instance of
SUPPLIER may relate to one or many instances of SUPPLIER." Recursive
associations are expressed using Standard Form V.

So here are our two rules about association lines:

• Each association line associates exactly two entity rectangles.^^
• The association expressed by an association line runs in both

directions, from Entity 1 to Entity 2, and from Entity 2 to Entity 1.
The association can be expressed in words in both directions.

There are also a couple of "modifiers" that indicate whether the
connection is

• mandatory (Entity 1 must have a relationship with Entity 2. Or, in
other words, each instance of Entity 1 must have a relationship with
at least one instance of Entity 2.) OR

• optional (Each instance of Entity 1 may have a relationship with
zero, one, or many instances of Entity 2.) OR

• optional-becoming-mandatory (Each instance of Entity 1 will
eventually have a relationship with one or more instances of Entity

As we'll see, it's useful to think this way about the curved line in a recursive association.
We might imagine rewriting the example above to look like this: SUPPLIER >—<
SUPPLIER.

40 Chapter 3

2. An instance may not currently have the relationship, but it will
acquire that relationship at some time in the future.).

The mandatory relationship is indicated by a short line (|) crossing near
the end of the basic association hne at right angles, like this:

This means: "Each instance of SUPPLIER must relate to one or many
instances of REPRESENTATIVE."

If we replace the short line with a circle (o), we indicate that the
relationship is optional, like this:

Which is to say: "Each instance of SUPPLIER may relate to zero, one, or
many instances of REPRESENTATIVE."

And if we put the two together (o|), we indicate optional-becoming-
mandatory.

In English: "Each instance of SUPPLIER must eventually relate to one or
more instances of REPRESENTATIVE."

We say that these modifiers indicate the optionality of the association.
And when we talk about the cardinality of the association, we're talking
about whether an entity has a one-to-one, or a one-to-many, or a many-to-
many association with another entity.

Whatever their optionality, one-to-many relationships are often called
parent-child relationships and will get implemented in associated tables—
that is, tables connected to each other by a shared key. Mandatory-one-to-
mandatory-one relationships usually get resolved into a single entity, so
they're easy to implement as a single table.

BUILDING THE DATA MAP 41

It's the many-to-many relationships that give us trouble. Implemented
directly in a relational database, they might require n-dimensional tables, and
the computer space required might just multiply geometrically each time we
add a new relationship. But there is a solution:

Reduce all many-to-many and recursive associations to one-to-many
relationships.

That is going to be our goal from here on out as we create our data map.

2.1 New notions

data map, association, one-to-one, one-to-many, many-to-many, recursive,
mandatory, optional, optional-becoming-mandatory, optionality, cardinality,
association line

2.2 Exercise: Create an Entity-Entity Matrix

An Entity-Entity Matrix is a way of making sure that you consider all
possible pairs of entity instances.

1. Take the entities identified in your entity roster—for example,
o ARTWORK
o ARTIST
o IMAGE
o LOCATION
o REFERENCE

-and create a table that shows all the possible pairs of entities, Uke
this:^

ARTWORK
ARTIST
IMAGE
LOCATION
REFERENCE

ARTWORK ARTIST IMAGE LOCATION REFERENCE

^̂ For reasons of space, we've omitted the secondary entities. But they're legitimate entities,
and they should be there.

42 Chapter 3

2. In each cell, describe the relationship (if any) between the column
entity and the row entity. Use Business Statement terms: may, must,
will eventually, etc. Your descriptions should read from left to right,
row by row:

ARTWORK

ARTIST

IMAGE

LOCATION

REFERENCE

ARTWORK
may contain
0, 1, or many

must create 1
or many

must show 1
and only 1
(3)

must contain
1 or many
must
describe 1 or
many

ARTIST
must be
created
by 1 or
many
may
work
with 0 ,1 ,
or many
[none]

[none]

[none]

IMAGE
must be
shown in
1 or
many

(1)

maybe
related
to 0 ,1 ,
or many
[none]

[none]

LOCATION
must reside
in 1 and only
1

[none]

[none]

[none]

[none]

REFERENCE
may be
described in 0,
1, or many

(2)

[none]

[none]

[none]

3. Each time you make a judgment call, make a note of it. For example:
(1) "We will not be tracking images of artists (e.g., self-portraits)."
(2) "We will not be tracking comments about artists, only about
artworks."
(3) "A few images show two artworks for comparison purposes, but we
will not track them."

4. IVIake a list of all the associations in your table. Then validate them by
matching each one to a specific Business Statement. If you have any
Business Statements left over, or if a Business Statement is related to a
great number of associations, that may tell you something. (Note:
Some enterprise modeling tools can generate the report you need. If
you're making your own, you'll find this process easier if each of your
Business Statements is in one of the Standard Forms.)

An Entity-Entity IVIatrix is okay for small projects. But, obviously, the
more entities you have, the larger the table. That's why for larger projects it
may be better to use an enterprise modeling tool. But creating an Entity-
Entity IVIatrix has its advantages. It reminds you to

• Be thorough
• Document your decisions

BUILDING THE DATA MAP 43

• Check for errors in Business Statements
• Validate your work.

As you learn more about entities and associations, you will find it useful
to go back to your Entity-Entity Matrix and revise it to reflect your current
understanding of the area you are modeling.

Another way to check for correctness is to build a Statement-Entity
Matrix. Here's part of a matrix created using the Visible Systems' Visible
Advantage enterprise modeling tool:

Data Objects

Statements
ARTIST ALPHABETICAL LISTING (Business
Rule)
ARTIST DATE STRUCTURE (Business Rule)

ARTIST IDENTIFICATION (Business Rule)

ARTIST RELATED TO ARTIST (Business Rule)

ARTIST RELATED TO ARTWORK (Business
Rule)
ARTIST RELATED TO COMMENT (Business
Rule)
ARTIST TIMELINE (Business Rule)

ARTIST TIMELINE (Business Rule)

>
H

H

>
H
0)
H
O

o
m
z
H

V

>
H
CO
H
CO
H
DD
C

o
H
C
1i
m

>

O
7s

>
33

O
33

>
33
H
CO
H

V

>
33

O
33
T;
o
o

m
2
H

> 1
33

7s

The items on the left are the titles of the Business Statements. (The flavor of
the Business Statement is given in parentheses.) The items across the top are
names of entities. The associations between Business Statements and entities
are marked at the intersections. If you find that a row or column contains a
great number of associations or no associations, something may be wrong.

3. CLASSIFY ENTITIES BY FLAVOR

Now you're almost ready to start connecting entity rectangles. Here are
all the flavors of entities you'll be connecting, along with the symbols we'll
be using:

44 Chapter 3

Principal (P)
Secondary (S)
Intersecting (I)
Type(T)
Role (R)
Structure (U)

If it helps any, you can juggle the symbols to spell U-STRIP or STIR UP.

3.1 Principal Entity

A principal entity is of interest to the entire enterprise—for example,
EMPLOYEE. After all, every area in the company has employees.

To put it another way, a principal entity usually crosses organizational
boundaries. For example, the principal entity STUDENT is used both in
scheduling classes and in biUing.

For later discussion, we'll indicate a principal entity as "P". On the data
map, it will be a rectangle like this:

STUDENT

P entities come in two varieties: dynamic and static. Mostly, we'll be
concerned with dynamic P entities. These entities, when converted into
tables in a database, contain data which changes frequently. For example,
STUDENT and EMPLOYEE are both dynamic P entities: students are
constantly enrolling, dropping out, or graduating; employees are being hired,
fired, laid off, etc.

Static P entities, on the other hand, can be thought of as lists that don't
change very often, such as a list of states in the union (e.g. Alabama, Alaska,
Arizona, Arkansas, etc.). Static P entities are different from dynamic P
entities in certain ways.

From here on out, you can assume that we are discussing dynamic P
entities unless we say otherwise. We'll discuss static P entities a Httle later.

BUILDING THE DATA MAP 45

3.2 Secondary Entity

A secondary entity is a subtype of a dynamic principal entity. In terms
of databases and stored information, it is a way to collect and store certain
information that is (1) related to a dynamic principal entity, but (2) of
interest only to one or two parts of the enterprise.

For example, the dynamic principal entity EMPLOYEE may have a
secondary entity called SALESPERSON that is of interest to Sales, but not,
probably, to the currency trading floor. In a relational database, the
SALESPERSON table would hold information that describes employees in
the Sales Department. And it won't hold all the information on those
employees, but just the information of interest to that department.^^

Secondary entities don't come alone. If a dynamic principal entity has
any secondary entities at all, it must have at least two, and they must be
distinct. Each secondary entity usually contains information different from
its mates.

In discussion, we'll represent secondary entities with "S". On the data
map, a secondary entity looks like a box on an organization chart:

Otherwise, a secondary entity acts like a dynamic principal entity: it can
have associations with other entities—principal, secondary, role, type, and
intersecting—and it can have subtypes of its own. We'll discuss this later.

You may need to define a secondary entity in order to keep certain information secure,
available only to people who are authorized to have it. Maybe the Sales Department
doesn't want other departments to know the details of its sales force.

46 Chapter 3

3.3 Intersecting Entity

Here's a typical many-to-many association between dynamic principal
entities:

In other words, one student may take many courses, and one course may be
taken by many students.

The way we handle this association is to create a new, "artificial" entity
(a meta-entity) called an intersecting entity:

STUDENT ^
STUDENT
COURSE ^ COURSE

STUDENT COURSE is an entity that cross-references students and courses.
It can also hold other useful information as well: attributes like the semester
when the course was taken and the grade the student got.

There are a couple of other many-to-many associations that an
intersecting entity can resolve:

1. Between a dynamic principal entity and another dynamic principal
entity's associated secondary entity, and

2. Between two secondary entities each associated with a different
dynamic principal entity.

Here's an example of the first case. We have a many-to-many association
between the dynamic principal entity MATERIAL and the secondary entity
SPORTS, which is a subtype of the principal entity SHOE. We are saying
that a sports shoe can be constructed of a number of different materials and
that a material can be used in many different sports shoes. (We are also
saying that, for whatever reason, we don't care about materials used in dress
or casual shoes—not a realistic assumption, but we are trying to make a
point here.)

BUILDING THE DATA MAP Al

CASUAL

We can resolve this association by creating the intersecting entity
SPORTS MATERIAL:

MATERIAL <
SPORTS
MATERIAL > SPORTS

As for our second case, a many-to-many association between secondary
entities of different parents, well, we'll leave that to you to sketch out an
example.

For convenience, we'll often indicate an intersecting entity as "I".

3.4 Type Entity

Defining the relationship between a dynamic principal entity and its
secondary entities starts with creating a meta-entity called a type entity,
which later we'll indicate as "T".

Let's say we have the following Business Statement:

Each ARTWORK has the following subtypes:

o PAINTING
o SCULPTURE
o ARCHITECTURE
o DECORATION
o OTHER

In this case the association between the dynamic principal entity (sometimes
called the supertype) and all of its subtypes, taken together, is such that an
individual artwork may be any of these things, but it is one and only one of

48 Chapter 3

them.̂ ^ These five subtypes cover all artworks we're interested in (anything
that doesn't fit elsewhere qualifies as "other").

We would start out by drawing the association between the dynamic
principal entity and the secondary entities:

1

ARCHITECTURE

Then we ere

1

ARCHITECTURE

âte

1

PAINTING

ta type e

ARTWORK
TYPE

nti

ARTWORK

SCULPTURE

1

DECORATION

1

OTHER

ty and place it in our map like this:

^
v>

1

PAINTING

ARTWORK

SCULPTURE

1

DECORATION

1

OTHER

Notice that the connector between ARTWORK TYPE and ARTWORK
indicates one-to-many. We can read the diagram like so: "Each instance of
ARTWORK TYPE describes one or more ARTWORKS, and each
ARTWORK is of exactly one ARTWORK TYPE," i.e., is a work of
ARCHITECTURE, a PAINTING, a SCULPTURE, a DECORATION, or a
work of some OTHER type.

One thing about our list of artwork types: it covers the world. Anything
that isn't a work of architecture, a painting, a sculpture, or a decoration is
automatically of type OTHER, and secondary entities like PHOTOGRAPH
or DRAWING could be added later if necessary. There is, however, another
way of handling artworks of unidentified type. We can define a Type 0
(zero) and associate that type with the principal entity, ARTWORK itself.

The relationship between the supertype and any one particular instance of a subtype is
niandatory-one-to-optional-one (P -|—o- S): in other words, an instance of the supertype
may relate to zero instances or one instance of that particular subtype.

BUILDING THE DATA MAP 49

Then, if we have to classify a photograph or a drawing or some such, we
associate it with Type 0.

The type entity may become a table in a relational database. It must have
at least two attributes (columns): artwork type number and artwork type
name. In words and spelling (but not necessarily capitaUzation), the
"artwork type name" must exactly match the name of the
corresponding subtype entity: "painting," "architecture," etc., not
"picture," "building," and the like. So our ARTWORK TYPE table would
look something like this:

artwork tvDC no#
1
2
3
4
5

artwork_type_naine
architecture
painting
sculpture
decoration
other

Or, if we used the "Type 0" option.

artwork type no#
0
1
2
3
4

artwork_type_name
artwork
architecture
painting
sculpture
decoration

A type entity is always indicated by adding "TYPE" to the entity name:
EMPLOYEE TYPE, STUDENT TYPE, etc.

3.5 Role Entity

Now let's look at another Standard Form II business statement:

Each ORGANIZATION has the following subtypes:
o CUSTOMER
o CONTRACTOR
o SUPPLIER.

In this case, the association between the supertype and all of its subtypes is
many'to-many?^ An individual organization can be a CUSTOMER, or it can

Whether this association is fnandatory-many-to-mandatory-many or mandatory-many-to-
optional-many depends on whether or not the subtypes, taken together, cover all instances.

50 Chapter 3

be (or can become) a CONTRACTOR. ABC Pest Control can have a pest
control contract with Monsanto and at the same time buy its pesticides from
Monsanto.

This many-to-many relationship marks these subtypes as roles. That
means they get some extra treatment.

We start just as before:

ORGANIZATION

CONTRACTOR

Then we add the type entity:

ORGANIZATION
TYPE ^—< ORGANIZATION

CUSTOMER CONTRACTOR SUPPLIER

Notice that the association between ORGANIZATION and
ORGANIZATION TYPE is many-to-many: an organization may have many
types, and each type may have many organizations.^^

Now here's where the role entity comes in:

If each instance of the dynamic principal entity must have a subtype, the association is
mandatory in that direction. These issues will be covered more thoroughly when we
discuss optionality and valid associations.

If the association between the type entity and the dynamic principal entity is one-to-many,
we have an exclusive type entity: an instance of the dynamic principal entity can be of one
and only one type. If, on the other hand, the association is many-to-many, we have an
inclusive type entity (Finkelstein and Aiken 2000: 98-99).

BUILDING THE DATA MAP 51

ORGANIZATION
TYPE

^
^

ORGANIZATION
ROLE

^
y>

1

CUSTOMER

ORGANIZATION

CONTRACTOR

1

SUPPLIER

The association between ORGANIZATION and ORGANIZATION ROLE
is one-to-many, and so is the association between ORGANIZATION TYPE
and ORGANIZATION ROLE. We can read it like this: "Each organization
has one or more organization roles, and each role has one organizational
type."

Notice that the role entity is like an intersecting entity between the
dynamic principal entity and the type entity. We can expect it to function
similarly, as a cross-reference between the dynamic principal entity and its
corresponding type entity.

One last thing. A type entity can be associated with only one dynamic
principal (or secondary) entity. In other words, it can define the subtypes for
only one supertype. If you introduce a role entity, it sorts out the
relationships between the supertype entity and its type entity: between those
two entities and no others.

In later discussion, we'll refer to a role entity as "R".

3.6 Structure Entity

The structure entity is used to clarify situations where only specific
instances of an entity relate to instances of the same entity. In other words,
it's used to straighten out recursive associations.

Let's look at a recursive association:

SUPPLIER
9
' ^

What the picture says is this: Some suppliers are just suppliers, while others
have suppliers of their own.

To straighten this out, we'll create a structure entity like this:

52 Chapter 3

SUPPLIER <
SUPPLIER

STRUCTURE

This may seem inane right now, but we will get a better understanding of it
when we discuss the keys that identify instances in the structure entity. Later
on, we'll refer to structure entities with "U".

3.7 New notions

principal, intersecting, secondary, type, role, structure, supertype, subtype,
meta-entity

BUILD THE DATA MAP (FIRST DRAFT)

Now let's get down to building our data map:

1. Create a rectangle for each principal and secondary entity.
2. Connect the rectangles with the proper connector: one-to-one, one-to-

many, many-to-many.
3. Add the modifiers: optional, mandatory, optional-becoming-

mandatory.
4. String everything together in a data map that shows all entities and

associations simultaneously. For example:

Pr

1
n

ARCHITECTURE

ARTIST

DECORATION

BUILDING THE DATA MAP 53

(You may find it useful to look at the relationships in the sample
Entity-Entity Matrix and see how they're mapped here.)

5. Create all necessary meta-entities (intersecting, type, role, and
structure). You should end up with something like this:̂ ^

IMAGE
STRUCTURE HM

ARTWORK
TYPE

ARCHITECTURE
STRUCTURE >CHH

c +-N
A

r04 ARTWORK
REFERENCE N

rO^ ARTWORK
STRUCTURE

ARTIST
STRUCTURE

J

ARCHITECTURE

ARTWORK
ARTIST

(Try reading each association on this map and comparing it with the
corresponding association on the previous map.)

Usually, an enterprise modeling tool like Visible Advantage, ERwin, or
Rational Rose would be used to automate the process of creating a data map.
But to use them, you need to be a bit farther along in the data modeling
process. For now you may find it easiest to use Microsoft Visio, Adobe
Illustrator, or SmartDraw.

^̂ This is an early draft, and it has a couple of errors. You should be able to spot them once
you cover Keys and Structure Entities (Chapter 5, Sec. 2.8) and Triads (Chapter 9, Sec.
2).

Chapter 4

THE ART GALLERY WEB (CONTINUED)
Wherein Dr. Pangloss builds his first draft data map

[Dr. Pangloss continues:]

"Based on the business rules and the shape of my existing web, I created
a first-draft list of entities, defined each, and gave a reason for inclusion. I
chose the names to be close to the names I'm used to, yet clear and
unambiguous. I wanted them to be one word each, so that when I created
type, role, and structure entities, I would be dealing with two-word entity
names. And, of course, I wanted to avoid words that are commonly reserved
for doing things with databases, e.g. create, table, foreign, primary, key."

4. Initial Entity List

ARTWORK - an object that has been identified as having aesthetic value;
the essential content of the site

ARTIST - the creator of an artwork. Almost all artwork images are
classified and accessed via artist,

IMAGE - a visual representation of an artwork^ realized as a computer
file in one of a limited number of image formats; the essential means of
content delivery

LOCATION - the place where the artwork resides; essential for
establishing the identity of the artwork

REFERENCE - a book or other source of information about artworks,
artists, and the subjects of art; a less important entity, necessary for
documenting comments

56 Chapter 4

PAINTING - an artwork realized by placing pigments on a (usually flat)
surface; the great majority of artworks in the collection

SCULPTURE - an artwork realized in three dimensions; a very few
artworks in the collection

ARCHITECTURE - art realized in a building or space; a few artworks

DECORATION - an artwork realized as an object of utility; a few
artworks

OTHER - an artwork realized in unconventional or composite media and
otherwise unclassifiable; few or no artworks currently; required for
comprehensiveness

"I also listed the losing candidate entities and gave the reason why I was
rejecting them. From my experience with software implementation projects,
I knew that rare events are best left to work-arounds. This was my usual
reason for omitting something. But I wanted a record of my original thinking
in case I decided later that there was a good reason to add one of these
candidates to the entity list."

Rejected as entities

artwork title, date, and collection accession number - attributes of
ARTWORK

era, period style - attributes of ARTWORK. These might eventually
become entities, depending on how important the concepts are

origin - may be an entity (because there are multiple levels of origin
definition); but rarely used, therefore low priority

source - ambiguous: could mean either a ''source artwork" or a non-art
''source medium "

group of artworks - rare

encompassing artwork - handle by recursive relationships

subject - multiple values for one artwork; possible multi-level; low
priority for implementation as an entity

museum, building, estate - covered in LOCATION and ARCHITECTURE

website - attribute of some current locations

THE ART GALLERY WEB (CONTINUED) 57

comment - an attribute of ARTWORK; the same comment will not usually
be used to describe two different artworks; the citation pointing to
REFERENCE can be made an attribute of ARTWORK as well

thumbnail - an IMAGE; best to think of it as one of two images related to
an artwork, than as an image related to another image

fdename - attribute of IMAGE

"There are lots of mistakes in these lists. I realize that now. But I had
enough to go on, and so I created an Entity-Entity Matrix. I wanted to record
the relationships between the entities, and I wanted to make sure I didn't
leave any relationships out."

5. Entity-Entity Matrix

ARTWORK

ARTIST

IMAGE

j LOCATION

REFERENCE

PAINTING

SCULPTURE

ARCHI
TECTURE
DECORA
TION
OTHER

ARTWORK
contains
0/1/m
creates 1/m

shows 1 (7)

houses 1/m

describes
1/m
is a type of

is a type of

is a type of

is a type of

is a type of

ARTIST
is created
by 1/m
works
with
0/1/m
(6)

~

(6)

is created
by
is created
by
is created
by
is created
by
is created
by

IMAGE
is shown in
1/m
(6)

is associated
with 0/1/m
—

~

is shown in

is shown in

is shown in

is slwwn in

is slwwn in

LOCATION
resides in 1

~

contains?
(1)
~

resides in

resides in

resides in

resides in

resides in

REFERENCE 1
is described in
0/1/m
(6)

~

~

~

is described in

is described in

is described in

is described in

is described in

ARTWORK
ARTIST
IMAGE
LOCATION
REFERENCE

PAINT
ING
may be a
creates
shows
houses
describes

SCULP
TURE
may be a
creates
shows
houses
describes

ARCHI
TECTURE
may be a
creates
shows
houses 0/1/m
describes

DECOR
ATION
may be a
creates
shows
houses
describes

OTHER

may be a
creates
shows
houses
describes

58 Chapter 4

PAINTING

SCULPTURE

ARCHITECTURE

DECORATION

OTHER

PAINT
ING
~

~

may
contain
0/1/m
may
contain
0/1/m
~

SCULP
TURE
—

~

may contain
0/1/m

may contain
0/1/m (2)

~

ARCHI
TECTURE
resides in
0/1/m (8)
resides in
0/1/m (8)
may contain
0/1/m (8)

resides in
0/1/m (8)

resides in
0/1/m (8)

DECOR
ATION
may be part
of 1(2)
may be part
of 1 (3)
may contain
0/1/m

may contain
0/1/m (4)

may be part
of 0/1 (5)

OTHER

~

~

may
contain
0/1/m

~

"Wherever I had to make a decision about a relationship, I made a note of
it in a standard format: question, reasoning, conclusion. I added the
cardinality (0/1/m) to the matrix at a later stage of development, after I'd
written formal Business Statements. As I updated the matrix, I added notes
as necessary, numbering them in parentheses in the matrix."

Entity-Entity Matrix Notes [selections]

L Can a LOCATION contain a LOCATION? Yes. For example^ the
Chapel of Eleanor of Toledo is contained in the Palazzo Vecchio, and
both are LOCATIONS. An artwork may be in the Palazzo, but not in the
Chapel. But some artworks are in the Chapel and therefore in the
Palazzo. LOCATIONS are nesting but never overlapping: an artwork
cannot be simultaneously in the Palazzo and the Louvre. Therefore, by
linking an artwork to the most proximal location (the Chapel of Eleanor
of Toledo), we link it necessarily to all locations above it (Palazzo
Vecchio). Conclusion: LOCATION is recursive

6. There are cases of artists being shown in artworks and therefore in
images, but that is of low priority. Ditto comments about artists.
Conclusion: Omit these associations.

7. In rare cases, an image will show more than one artwork. Conclusion:
Omit. ...

"In the Entity-Entity Matrix I put some relationships in italics. That was
to remind me that those relationships were the same for the artwork type as
they were for artworks in general. In other words, an artist creates a painting,
but that's because an artist creates an artwork.

THE ART GALLERY WEB (CONTINUED) 59

"Using italics that way allowed me to highlight the unusual situation:
Each LOCATION houses zero, one, or many ARCHITECTURES. The
persistent problem in the data model has been how to handle situations
where one artwork is part of another artwork which itself is a location—for
example, when you have a sculpture by Michelangelo residing in the Palazzo
Vecchio, or, better, when you have that sculpture in a particular room in the
Palazzo, and that room is itself a work of architectural art.

"When I came to write formal Business Statements—and later, as I
revised them—I chewed on this problem again. As usual, I kept notes about
the reasoning behind each decision I made."

6. Business Statements

Each ARTWORK may contain one or many ARTWORKS. (Assumes that
a lone artwork does not contain itself.)

Each ARTWORK must be created by one or many ARTISTS. (Assumes
that a work by an unknown artist will be associated with an artist called
''unknown " or ''anonymous, "f^

Each ARTWORK must be shown in one or many IMAGEs.

Each ARTWORK must reside in one and only one LOCATION.
(Assumes that a work that has been destroyed will be associated with a
current location called "destroyed.")

Each ARTWORK may be described in one or many REFERENCES.

Each ARTWORK has the following subtypes:
- PAINTING
- SCULPTURE
- ARCHITECTURE
- DECORATION

- OTHER.

Each ARTIST may work with one or many ARTISTs.

Each IMAGE may be associated with one or many IMAGEs.

Each LOCATION may contain one or many LOCATIONS.

^̂ and Each ARTIST must create one or many ARTWORKS. (Added to 3'"^ draft data map.)

60 Chapter 4

[Business Statements that were subsequently deleted have been omitted
here.]

Each LOCATION must have one or many ARTWORKS. (Note: This was
overlooked in the Entity-Entity Matrix. I have rethought the matrix to
include cardinality,)^

"The advantage of formal Business Statements over the Entity-Entity
Matrix is that they include optionality. So now I had everything I needed to
create my data map. But I wanted to go at things systematically, so I
formalized the entity-entity associations, cardinality, and optionality in a
table. I underlined a couple of associations that I still had questions about.
Much later, I marked out associations that I'd decided were not valid."

7. Binary Associations

Association
ARTWORK — ARTWORK

ARTWORK — ARTIST
ARTWORK — IMAGE

ARTWORK — LOCATION
ARTWORK — REFERENCE

ARTIST — ARTIST

IMAGE—IMAGE
LOCATION---LOCATION
LOCATION —
ARCHITECTURE

Cardinality
ARTWORK —< ARTWORK

ARTWORK >—< ARTIST
ARTWORK —< IMAGE
ARTWORK >— LOCATION
ARTWORK —< REFERENCE

[subtypes deleted later]
ARTIST —< ARTIST

IMAGE —< IMAGE

LOCATION —< LOCATION
LOCATION —<
ARCHITECTURE

Optionality
ARTWORK —CK ARTWORK

ARTWORK >l--!< ARTIST
ARTWORK ™|< IMAGE
ARTWORK >l— LOCATION
ARTWORK—(X REFERENCE

ARTIST —o< ARTIST

IMAGE —(X IMAGE

LOCATION —(X LOCATION
LOCATION —(X
ARCHITECTURE

"And then I built it."

^ Added to 3''^ draft data map.

THE ART GALLERY WEB (CONTINUED) 61

8. First Draft Data Map

MAGE ^ o4

:î

ARCHITECTURE

-4

DECORATION

[To be continued ...]

Chapter 5

KEYS AND VALID ASSOCIATIONS
Wherein we acknowledge kinship

I. DEFINE PRIMARY AND FOREIGN KEYS

Now we're in position to discuss some essentials in more detail:

• keys
• cardinality and optionality
• valid associations.

We'll start by defining a parent-child relationship as a one-to-many
association. The parent is on the "one" end, and the child is on the "many"
end. Exceptions:

1. A PS association (dynamic principal entity to secondary entity) is a
parent-child relationship even though it is one-to-optional-one. That's
because the one-to-many relationship is between the principal entity
and all its secondary entities, taken together.

2. Mandatory-one-to-optional-one (-|—o-) and mandatory-one-to-
optional-becoming-mandatory-one (-|—o|-) are also parent-child
relationships. In both cases, it's immediately clear which entity (the
one on the mandatory-one end of the association) is the parent entity
and which is the child entity.

Depending on its flavor and where it appears in the data map, an entity
may be a parent, a child, or both a parent and a child. The notion of the

64 Chapter 5

parent-child relationship is a very important one, especially when we talk
about keys and inheritance.

So let's talk about keys. If you are familiar with databases, you know
about keys akeady.

1.1 Primary Key

When we talk about the primary key, we mean the attribute or set of
attributes that uniquely identifies each instance of the entity. Let's take an
example:

• STUDENT is an entity. It represents all the students in the college,
in terms of the information the college gathers about them.

• Attributes of the STUDENT entity may include things like name,
address, telephone number, graduation date, and declared major.
(Note that shoe size is not an attribute: it may describe the student,
but it's not information the college cares about, collects, and stores
for reference.)

• If we want to identify a student uniquely—that student and no
other—we don't use the student's name: who knows how many
James Johnsons are on campus? Instead, we use the Student ID,
because one and only one student has that number. That means that
Student ID is the primary key for the entity STUDENT.

Notice that the Student ID is not a feature of the student as a human
being. It's not a name, an address, shoe size, or anything like that. It was
created solely to be the unique identifier. When a student registers for the
first time, he or she is issued an ID card with a Student ID on it. From then
on, that's how the college knows that particular student for any
administrative purpose.

If a primary key exists for an entity, it's usually obvious what it is—for
example, an employee ID number. Sometimes, though, there are two or
more attributes that, taken together, identify the entity uniquely. You can
then define a compound primary key as the combination of those
attributes.

Here are a few rules for designating a primary key:

KEYS AND VALID ASSOCIATIONS 65

• Avoid using dates^^ text, street addresses—things that change,
things that aren't obviously sequential. One common exception:
email addresses. Websites often use the email address as a primary
key to designate a person uniquely.

• Avoid using attributes that aren't under your company's control.
Your supplier's part number may look enticing as a key. But what
happens if the supplier decides to change its part numbering
scheme? Or if a different supplier uses that same part number?

• If you're going to create a primary key, make it numeric: long
enough for comprehensiveness, short enough for convenience. For
example, a four-digit number (0000-9999) should be enough to
identify all procedures in a small company.

• When you come to create an entity list (a list of entities and their
associated attributes), write the attribute like this: procedure no#. By
underlining the name and adding the hash mark (#), you indicate that
it's all or part of the primary key for the entity.

Let's try another example. In the art gallery data model, we have an
entity called ARTIST. Currently, we identify artists by the following
attributes:

• Name
• Pseudonym
• Dates.

None of these can be the primary key. Two artists may have the same
name—"Unidentified," for example. Not every artist has a pseudonym, as
did Paolo Caliari ("Veronese"). And we don't always know the birth date or
death date of an artist.

But we can see that William Morris (1834-1896) and William Morris
(1957-) are two different artists, so why can't we just define name+dates as
the compound primary key? Well, that would mean that we'd have key
values Uke "Enguerrand Quarton fl. 1444-1466" and "Petrus Christus act.
1444, d. 1472/73." That's an awful lot of complication (and not easy to
implement in a database). We'd do better to create a primary key called
artist no#. If we make it a four-digit serial number, we can accommodate
10,000 artists in our gallery.

^̂ Unless you have a good reason. See the end of Keys and Role Entities (Sec. 2.6, below).

66 Chapter 5

A primary key like student id# or artist no# is called an originating
primary key. That's because the key is not taken over from another source,
but exists in or is created for that entity. It may help if you imagine a data
entry system. Whenever you create a new record, you enter (or the system
creates) a primary key value that is stored in a particular table. That key may
be used elsewhere in the database, but it originates in that table. Of course,
non-originating primary keys do exist, in secondary, intersecting, and
structure entities in particular.

1.2 Foreign Key

Now let's relate keys to parent and child entities. A child is connected to
its parent by the parent's primary key. The parent entity instance's primary
key copies down to the child entity as a foreign key, appearing in the child
entity's attribute list. That's how the child entity instance is linked to the
particular instance of the parent entity that is relevant to it.

A foreign key is an attribute that does not originate with the entity itself,
but is passed down from another entity. In the entity list, when we come to
write the foreign key, we will write it with the hash mark (#), but we won't
underline it (unless it's also all or part of the child entity's primary key). So,
usually, a foreign key will look like this: artist_no#.

For example, let's take this association:

ARTWORK ^—K IMAGE

IMAGE is a child entity to ARTWORK: a work of art may have many
images, but an image will be of only one work of art (a one-to-many
relationship). In the entity list for ARTWORK, its primary key appears as
artwork no#. But in the entity list for IMAGE, we will find an attribute
relating the image to that work of art: artwork_no#. It's a foreign key but not
part of the primary key, so no underlining.

A couple of quick tables may clarify. Here's ARTWORK:

And here's IMAGE:

artwork no#
1

artwork_naine
Madonna and Child

image no#
1625

artwork_no#
1

KEYS AND VALID ASSOCIATIONS 67

In other words, Image No. 1625 shows Artwork No. 1, Madonna and Child.

Let's review by going back to first principles. The primary key
artwork no# lets us

• identify each artwork uniquely and
• access the information about that artwork that is contained in the

ARTWORK table in our database.

The foreign key "artwork_no#" appears in the table that relates to images. It
identifies the artwork shown in the image. It's a foreign key because it
doesn't originate in the IMAGE table, but in the ARTWORK table. If an
artwork is added to our collection, its row is added to the ARTWORK table.
Then that row's primary key will be copied into the IMAGE table so that
additional information about the artwork can be stored there.

1.3 Summary to this point

• Every instance of an entity has a unique primary key.
• The primary key may be simple (consisting of a single attribute) or

compound (consisting of two or more attributes).
• Every instance of a child entity has one or more foreign keys copied

down from its parent entity or entities.
• A foreign key may or may not be all or part of the child entity's

primary key.

1.4 Identifying and Non-identifying Associations

If the foreign key (the parent's primary key) is all or part of the child's
primary key, then we call the association between the parent entity and the
child entity an identifying association, because it identifies each instance of
the child entity.

For example, an out-of-state student isn't a different person from a
student, so, whether she's dealing with the Registrar or with the Finance
Office, she identifies herself with the same Student ID. In data modeling
terms, the secondary entity OUT-OF-STATE STUDENT has the same
primary key as its parent, the dynamic principal entity STUDENT. In an
identifying association, the key that is copied down to the child entity is both
a primary key and a foreign key.

But if the child's primary key does not include the parent's primary key,
the child's attributes will still include the parent's primary key as a foreign

68 Chapter 5

key. Then the relationship between parent and child is called a non-
identifying association. The parent entity's key still copies down, but it
does not become all or part of the child's primary key.

1.5 New notions

parent-child relationship, primary key, entity list, compound primary key,
originating primary key, foreign key, identifying association, non-identifying
association

1.6 Exercise: Create an entity list for your data map

1. Create a three-column table and populate the left-hand column with
the names of all the entities shown in your current-draft data map.
For each entity, write its primary key in the second column. Be sure to
underline it and append the hash mark (#). If you can't determine the
primary key right now, leave the space blank.
Hold onto this list until you've reviewed Relate Keys to Associations
and Validate Cardinality and Optionality of Associations (Sees. 2
and 3, below).

Example:

2.

3.

1 Entity
IMAGE
REFERENCE
LOCATION
ARTWORK
ARTIST
ARCHITECTURE
PAINTING
SCULPTURE
DECORATION
OTHER
ARTWORK ARTIST
ARTWORK REFERENCE
ARTWORK TYPE
IMAGE STRUCTURE
ARTWORK STRUCTURE
ARTIST STRUCTURE
ARCHITECTURE STRUCTURE

Primary Key
filenanie#
reference no#
location no#
artwork no#
artist no#
artwork no#
artwork no#
artwork no#
artwork no#
artwork no#

Foreign Keys

KEYS AND VALID ASSOCIATIONS 69

2. RELATE KEYS TO ASSOCIATIONS

Obviously, if we're going eventually to construct database tables from
our data modeling information, we've got to provide enough of the right
kind of information to make that possible.

2.1 Keys and Dynamic Principal Entities

First of all, let's consider dynamic principal entities. A principal entity
(whether dynamic or static) has an originating primary key: a key of its own
that it passes down to its children, if any.

A dynamic principal entity can be a parent to

• another dynamic principal entity (P), but not to a static principal
entity, as we'll see

• a role entity (R)
• a secondary entity (S)
• a structure entity (U) or
• an intersecting entity (I).

In other words, there can be a one-to-many relationship between a dynamic
P and any of these other entities. Remember that a dynamic P has a one-to-
many relationship with all its related S entities. The relationship between a
dynamic P and a single child S entity is one-to-one. A dynamic P can also
have a mandatory-one-to-optional-one (or optional-becoming-mandatory-
one) association with another dynamic P.

We've already seen these relationships in our definitions of the other
flavors of entities. And we already know that the dynamic principal entity's
primary key is replicated in each of its children.

A dynamic principal entity can also be child to a type entity in an
exclusive subtype association. If a type entity is created to explain the
subtypes of a principal or secondary entity, it is always associated with the
corresponding dynamic principal entity or secondary entity in a one-to-many
(parent to child) relationship. (That's by definition.) Because the type entity
is the parent, its primary key will be replicated as a foreign key in the
corresponding dynamic principal or secondary entity.

70 Chapter 5

2.2 Keys and Static Principal Entities

We have just described the key structure for the principal entities you
will use when you are dealing with what we have been calling "dynamic"
principal entities: principal entities containing data subject to frequent
change. Occasionally, you'll want to model "static" principal entities. The
difference is that the actual data contained in static entities changes only
rarely.

For example, a list of states in the union (Alabama, Alaska, Arizona,
Arkansas, and so on) is not likely to change very often. As you develop your
data map, you may determine that an ADDRESS entity should include an
attribute for state (as in state of the union). Rather than listing all the valid
values as part of the description for the state attribute within the ADDRESS
entity, you can specify an entirely new static principal entity called
STATE.̂ ^

A static principal entity can be a parent to any flavor of entity, even to a
type entity. The primary key of a static principal entity copies down to its
child entity in a non-identifying association: the static principal entity is
merely supplying information, not controlling the creation of new instances
in the child entity.

2.3 Keys and Secondary Entities

We already know two things about secondary entities:

• A secondary entity is a subtype to a dynamic principal entity. That
means it is a child entity.

• A secondary entity can have its own subtypes (in which case it has
characteristics of both a dynamic principal entity and a secondary
entity). That means it can be a parent entity.

As a child to a supertype parent, the secondary entity will usually inherit
its primary key from its parent. For example, if PAINTING is the child of
ARTWORK, well, every painting is an artwork. Therefore, all or part of
P A I N T I N G ' S primary key is inherited from its parent: the relationship
between ARTWORK and PAINTING is identifying. The relationship is also

^ For more about attributes, see Chapter 7.

KEYS AND VALID ASSOCIATIONS 11

categorizing: it breaks down the instances of the parent entity into
categories that are represented by all the child entities.

If a secondary entity is a grandchild (the subtype of a subtype), things get
more complicated. We'll get to this situation in a minute, after we discuss
the key structures for intersecting, type, and role entities.

2A Keys and Intersecting Entities

An intersecting entity, as you'll recall, resolves many-to-many
associations between dynamic principal entities (between P and P), between
secondary entities (between S and S), and between certain dynamic principal
and secondary entities (between dynamic P and S). It is always the child in
these relationships, and it is rarely the parent to any other entity.

The primary key of an intersecting entity is usually a compound primary
key made up of the primary keys of the two or more entities it connects. For
example, in this map

STUDENT
^A STUDENT S .
" ^ COURSE U^ COURSE

STUDENT COURSE is the intersecting entity. If STUDENT'S primary key
is student id# and COURSE'S primary key is course no#, then STUDENT
COURSE has student id#, course no# as its primary key. In other words,
each instance of STUDENT COURSE will be uniquely identified by a
student's ID number and a course number. Both associations—with
STUDENT and with COURSE—are identifying.

Notice, though, that if we do things this way, we couldn't allow a student
to retake a course, because we can't have more than one instance of
STUDENT COURSE that has student id#, course no# as its primary key.
So, instead, we should define a primary key called student course no# and
keep "student_id#" and "course_no#" as foreign keys. In this case, both
associations are non-identifying and STUDENT COURSE is redefined as a
dynamic principal entity.

We could handle the situation another way. We could keep the
identifying associations with STUDENT and COURSE, but add another
column to the primary key—for example, a column for recording the
semester or quarter during which the student took the course (F2005, etc.).

72 Chapter 5

Consider this business rule: "Each student must take one or more courses
in a semester." With a Uttle information, interpretation, and logical
expansion, we get the following Business Statements:

1. "Each STUDENT must take one or many COURSES."
2. "Each COURSE accommodates one or many STUDENTS."
3. "Each COURSE is given in one or many SEMESTERS." This is from

the published class schedule.
4. "Each SEMESTER provides one or many COURSEs." This is from

the same pubUshed class schedule, just from a different direction.

In our notation,

STUDENT >h-|< COURSE

COURSE >h-|< SEMESTER

An obvious solution would be to create two intersecting entities and
produce something like this:

STUDENT —< STUDENT COURSE >---COURSE---< COURSE SEMESTER >— SEMESTER

But this doesn't fit our original business rule: it doesn't relate the student to
the course taken in a particular semester.

Actually, it maps like this:

COURSE -4
COURSE

SEMESTER

STUDENT -4

^ SEMESTER

A.
STUDENT
COURSE
SEMESTER

STUDENT COURSE SEMESTER is the intersecting entity between
STUDENT and COURSE SEMESTER, and its primary key looks something
like this:

student id#, course no#, semester#

2.5 Keys and Type Entities

We already know that the type entity is always the parent in the T-to-
dynamic-P or T-to-R parent-child relationship, so its (originating) primary

KEYS AND VALID ASSOCIATIONS 73

key is passed to the dynamic principal or associated secondary entity as a
foreign key:

T: typeno# ^~] P: keyno#, typeno#

SI: keync># S2: keyno#

The type entity provides the dynamic principal or secondary entity with
an attribute—the foreign key shown here as typeno#—that is used to
categorize the instances of the dynamic P. It's useful to think of typeno# as a
pointer: it tells us where to find further information about a particular
instance, based on the instance's category. We follow a trail:

• In the dynamic P, we use kevno# to find the instance we're
interested in.

• We look at typeno# to find out which S holds the information we
want.

• We go to that S, look up our instance by keyno#, and read the
information.

Read on.

2.6 Keys and Role Entities

When the type entity is part of a role relationship, it's still a parent, and
the role entity is the child. Likewise, the role entity is child to the dynamic
principal (or secondary) entity in the relationship:

T: typeno# ^^1 R: lceyno#, typeno# 1^^ P: keyno#

SI: keyno# S2: keyno#

We've said that role entities are very much like intersecting entities. Like
an intersecting entity, a role entity's primary key is (usually) a compound

74 Chapter 5

primary key, created by combining the primary keys of its parents. Since P is
no longer child to T, it no longer has T's primary key as a foreign key.

To summarize:

• T defines the various types of secondary entity. It assigns a name
(literally) to each subtype of the principal entity.

• Each instance of the dynamic P has (or may have) two or more types
(i. e., subtypes, represented by the secondary entities, but defined by
T) associated with it.

• Each instance of R relates an instance of the dynamic P to a
particular type.

• P and T each have an identifying relationship with R: the primary
key of each is copied down and becomes part of R's compound
primary key.

Check this out:

ORGANIZATION
TYPE <

ORGANIZATION
ROLE > ORGANIZATION

CUSTOMER CONTRACTOR SUPPLIER

In this example, ORGANIZATION ROLE has the primary key
organization no#, organization tvpe no#. If we search ORGANIZATION
ROLE, looking for the organization number of XYZ Company, we'll find
one or more instances, and each instance tells us how XYZ Company relates
to us: as a customer, or as a contractor, or as a supplier. The partial key
organization tvpe-no# gives us this information. Furthermore, because it's
part of the primary key, it distinguishes one instance from the next. Having
found all the instances related to XYZ Company, we can then home in on
XYZ Company in its role as customer and find information about XYZ in
that role.

We said that the dynamic principal entity and the type entity each have
an identifying relationship with the role entity. Nonetheless, as with an
intersecting entity, we can give ORGANIZATION ROLE an originating
primary key (and make it into a dynamic principal entity). That's useful
when an organization can have more than one role relationship with an
organization type.

KEYS AND VALID ASSOCIATIONS 75

And it can happen. For example, let's say you have a business rule that
says an organization can't be both a customer and a contractor at the same
time. XYZ Company might be a customer, then a contractor, then a
customer again. By creating an originating primary key, you can define two
different ORGANIZATION ROLE instances relating XYZ Company to its
role as customer. Alternatively, you could add a third key column to the
foreign keys inherited from ORGANIZATION and ORGANIZATION
TYPE—for instance, a column for storing a "role_start_date."

2.7 Keys and Mixed Secondary/Principal Entities

Now we're prepared to discuss what we'll call a "mixed secondary/
principal entity"^^: a secondary entity that has child secondary entities of its
own. It's a child with respect to its parent, and it functions like a dynamic
principal entity with respect to its own secondary entity children. For
simplicity's sake, we're not going to distinguish it as a seventh flavor of
entity, but we're going to note it as S/P.

To see how the keys copy down, let's look first at the unmixed case, the
dynamic-PSS association:

P

J L
s s

We know that in each case S has the same primary key as the dynamic P. To
define the relationship between the dynamic P and S, we create a type entity:

^̂ A principal entity with secondary entities is sometimes called a typed principal entity, and
a mixed secondary/principal entity is sometimes called a typed secondary entity. (*Typed"
means, of course, that an associated type entity defines the child secondary entities.)

76 Chapter 5

The T-dynamic-P association is non-identifying. T's primary key is copied
down to P as a foreign key.

Now let's imagine that one of the secondary entities has its own
secondary entities:

T2 - < S/P

The associations P -|—o- S1 and P -|—o- S/P are identifying and
categorizing: the parent's primary key becomes all or part of each child's
primary key, and each association is mandatory-one-to-optional-one. The
same is true for the association between S/P and S2: identifying and
categorizing. In both cases, the child copies down the parent's primary key
as its own primary key.

With that information, we can give the keys in detail:

KEYS AND VALID ASSOCIATIONS 11

Tl: typenol#

T2: typeno2#

^^1 P: lceynol#, typenol#

^
^^1 S/P: lceynol#, typeno2#

^

21
SI: keynol#

S2: keynol#

Zl
S2: keyiiol#

Let's follow the trail:

1. Starting at P, we use keynol# to find the instance we're interested in.
2. When we find it, typenol# tells us the instance's category.
3. If the desired instance is in SI, no problem. We look for the kevnol#

we want, and we find the information that SI has been holding for us.
4. If, however, the desired instance is recorded in S/P, we find that it's

still identified by kevnol#, but it has a foreign key as well: typeno2#.
5. S/P may give us some information about the desired instance. But

typeno2# tells us which S2 contains more specific information.
6. When we reach the right S2, we use kevnol# to find the information

held there.

There is theoretically no limit to the number of parent/child levels you
can have. But if you have more than three levels, something is probably
wrong.

2.8 Keys and Structure Entities

We already know that a structure entity handles recursive relationships: it
relates instances of a dynamic principal or secondary entity to other
instances of that same entity. In a data map

SUPPLIER fp
becomes

SUPPLIER <
SUPPLIER

STRUCTURE

which shows that a structure entity is always a child entity.

78 Chapter 5

Now here's how a structure entity actually works. Imagine that instead of
writing a recursive relationship hke this-

SUPPLIER fp
-we wrote it like this:

This makes sense: we're relating instances of SUPPLIER to instances of
SUPPLIER. Because SUPPLIER is just one entity, we have to make the
picture symmetrical, so we show the association as many-to-many.

If we saw the relationship written like this, we'd know exactly what to
do. We'd create an intersecting entity called SUPPLIER SUPPLIER and put
it between the two SUPPLIER entities, like this:

SUPPLIER
• ^

SUPPLIER
SUPPLIER ^ SUPPLIER

And because SUPPLIER SUPPLIER is an intersecting entity, it inherits the
primary keys of both its parents. If we assume that the association is
identifying, then SUPPLIER SUPPLIER has a compound primary key:
supplier no# (1), supplier no# (2), where (1) and (2) indicate the different
instances of SUPPLIER.

Of course, there's only one SUPPLIER entity, and there's no such thing
as SUPPLIER SUPPLIER. Instead, we have

SUPPLIER <
SUPPLIER

STRUCTURE

And SUPPLIER STRUCTURE inherits two supplier numbers from
SUPPLIER. The first identifies one supplier in the relationship. The second
identifies the other. Taken together, the two supplier numbers uniquely
identify a relationship between the two suppliers. If we add a non-key

KEYS AND VALID ASSOCIATIONS 79

attribute to name the kind of relationship, we've got the minimum
information we need to understand any instance of the structure entity.

And that's how the structure entity works:

• It receives two copies of the parent entity's primary key.
• Both copies become parts of its primary key.

2.8.1 Secondary entities and structure entities

So far, so good. Now let's complicate matters. A recursive relationship
often occurs when you want to relate instances of secondary entities. For
example, SUPPLffiR and CUSTOMER are both subtypes of
ORGANIZATION, and you want to keep track of relationships between a
supplier and a customer.

First, let's review what you already know about structure entities and
secondary entities:

• A structure entity records the relationship between two (usually
different) instances of the same entity. The structure entity inherits
two copies of its parent's primary key, one for each instance, and
that's where it gets its compound primary key.

• The relationship between a supertype and its subtypes is defined by
creating a type entity.

• A role entity records the relationship between an instance of a type
entity and an instance of a principal entity.

• The instances of a subtype— t̂he rows in a secondary entity—can be
regarded as a subset of its parent's instances.

Next, let's review a couple of definitions:

• An exclusive type entity has a one-to-many association with the
supertype entity: T —< P.

• An inclusive type entity has a many-to-many association with the
supertype entity: T >—< P. It is resolved by interposing a role
entity: T —< R >— P.

We need these two definitions because they define two different
situations that we may encounter when we have recursive relationships
between instances of subtypes:

• Exclusive: Each instance of the dynamic principal entity has (at the
most) only one type.

80 Chapter 5

• Inclusive: An instance of the dynamic principal entity may have
more than one type (either at the same time or at different times).

Case 1: Exclusive type relationship

Here's a general example of the exclusive type. You have a dynamic
principal entity called ORGANIZATION. Its instances are of different types
that are important to you—say, customer, supplier, and contractor.

You want to add a structure entity because, as we said before, you want
to store information about the relationship between a supplier and a
customer, a supplier and a suppUer, a customer and a customer, etc. So let's
look at our data map:

ORGANIZATION
TYPE

1
CUSTOMER

^
^

ORGANIZATION

CONTRACTOR

^
^

ORGANIZATION
STRUCTURE

1
SUPPLIER

And here's how the parent/child associations work:

1. CUSTOMER, CONTRACTOR, and SUPPLIER each inherit the
primary key of ORGANIZATION as their own primary keys.

2. The association between ORGANIZATION and ORGANIZATION
STRUCTURE is identifying. ORGANIZATION STRUCTURE
receives two copies of ORGANIZATION'S compound primary key,
one for each instance that will be associated. Each of these copies (call
them 1 and 2) becomes part of ORGANIZATION STRUCTURE'S
compound primary key.

In sum.

T: type no# ^^1 P: key no#, type__no#

SI: key no#

< U: key nol#, key no2#

S2: key no# S3: key no#

In an exclusive type relationship, an organization may be a customer or a
supplier, but not both at the same time. And having been defined as a
supplier, the organization can never become a customer.

KEYS AND VALID ASSOCIATIONS 81

So here's your customer, Booch Chemical, and you want to relate Booch
to Rumbaugh Applications, one of your contractors. You have a type entity
and a dynamic principal entity in your database:

tvDe no#
0
1
2
3

type_name
organization
customer
contractor
supplier

key no#
1
2
3
4

type_no#
1
2
0
3

key_name
Booch Chemical
Rumbaugh Applications
Date & Codd Funds
Reasonable Software

You've also got three secondary entities, CUSTOMER,
CONTRACTOR, and SUPPLIER:

key no#
1
7

(other) key no#
2
5

(other) key no#
4
9

(other)

Note: (other) stands for other columns of information that you are using to
describe organizations of a particular type.

Finally, we have a structure entity:

key nol#
1
2

key no2#
2
3

(other)

The first instance in this table relates Booch Chemical to Rumbaugh
Applications. The second relates Rumbaugh Applications to Date & Codd
Funds. And so it goes.

Nothing much to say here: Booch Chemical is always type 1, Rumbaugh
Applications is always type 2, and there will always be only one relationship
between Booch Chemical and Rumbaugh Applications. The primary key for
each instance of the structure entity is unique, as it must be.

Case 2: Inclusive type relationship

In an inclusive type relationship, an instance of a dynamic P may be in
more than one category (S entity), whether at the same time or at different
times. Thus, there is a many-to-many association between the dynamic P and
T, and this association is resolved by a role entity. If we didn't have to worry
about recursion, we'd have a data map like this:

82 Chapter 5

ORGANIZATION
TYPE <

ORGANIZATION
ROLE ^ ORGANIZATION

CUSTOMER CONTRACTOR SUPPLIER

But how to handle recursion? Where to place the U entity?

The relationship we want to record is the relationship between two
instances of a dynamic P when they are associated with particular
categories—in other words, in particular roles. We get this result by placing
the U entity like this:

ORGANIZATION
ROLE

STRUCTURE

Y

ORGANIZATION
TYPE <

ORGANIZATION
ROLE ^ ORGANIZATION

CONTRACTOR SUPPLIER

And here, in the abstract, is how the keys work:

U: key nol#, type nol#

key no2#, type no2#

V
T: type no# • ^ \ R: key no#, type no# [^^ P: key no#

SI: key no# S2: key no# S 3 :

n
key no#

Because the role entity is child to the dynamic P and T entities, it inherits a
foreign key from each, and these two foreign keys become parts of R's
compound primary key. The U entity relates two instances of R. Therefore,

KEYS AND VALID ASSOCIATIONS 83

it inherits two copies of R's primary key, one for each instance in the
relationship.

So let's get back to our example and look at the tables involved, starting
with the type and principal entities:

type no#
0
1
2
3

type_name
organization
customer
contractor
supplier

key no#
1
2
3
4

key_name
Booch Chemical
Rumbaugh Applications
Date & Codd Funds
Reasonable Software

The secondary entities contain instances of the primary entity. Because
Booch Chemical has both a customer role and a contractor role and
Rumbaugh Applications has both a contractor role and a suppUer role, the
same instance of the dynamic P will appear in two different S tables:

key no#
1
7
14

(other) key no#
1
2
4

(other) key no#
2
5
13

(other)

The role entity relates the organizations to their various types:

key no#
1
1
2
3
4

type no#
1
2
2
0
2

(other)

And so we come to our structure entity:

key nol#
1
1
2
2

type_nol#
1
2
2
2

key no2#
2
2
3
4

type_no2#
2
2
0
2

(other)

Notice how the instances of R are repeated as parts of the compound primary
key in instances of U. The first instance in this table relates Booch Chemical
as customer to Rumbaugh Applications as contractor. The second relates
Booch Chemical as contractor to Rumbaugh Applications as contractor.
The third (same as in the previous example) relates Rumbaugh Applications
as contractor to Date & Codd Funds. Again, each compound primary key is
unique.

84 Chapter 5

A final note: We haven't considered the possibility that Booch Chemical
might be a supplier in 1999, a contractor in 2000, and a supplier again in
2001. That is to say, we might want to distinguish between Booch's
relationship with Rumbaugh in 1999 and its relationship with Rumbaugh in
2001. If there are going to be more instances than one of Booch as supplier,
we've got to find a way to distinguish them.

We might do this by adding an additional key attribute to the primary key
in ORGANIZATION ROLE. And that means that the primary key of the
structure entity will have six parts. It may not be pretty, but all the parts are
necessary and everything will work. Test it out.

Another solution would be to create a static P entity called, perhaps,
YEAR (assuming that roles change only on December 31 at midnight). Then
we could copy down the YEAR entity's key to the ORGANIZATION
ROLE STRUCTURE entity. The key for ORGANIZATION ROLE
STRUCTURE would thus have five parts.

2.9 Summary: Logical inheritance of keys

Flavor
Principal (P)
Intersecting (I)
Secondary (S)
Type (T)
Role (R)
Structure (U)

Can be a Parent to
P, R, S, U, I, T '

I
S^ P, R, U, I
R, P, S
U
None

Can be a Child to
T, P, S
P,S,I
T,P,S
P̂
T, P, S
P, S \ R

A dynamic principal entity cannot be a parent to a T entity. A static principal entity can be
a parent to a T entity.

^ A secondary entity that is parent to another secondary entity is in fact a mixed
secondary/principal entity if both secondary entities descend (ultimately) from the same
parent.

^ A structure entity can be a child to a pure secondary entity or a mixed secondary/principal
entity, but the association will probably be handled at the top level, in a dynamic-PU
association.

2.10 New notions

categorizing association, key attribute

KEYS AND VALID ASSOCIATIONS 85

2.11 Exercise: List the associations in your draft data map

1. Make a two-column table. In the left-hand column list every pair of
entities on your data map, and in the right-hand column show the
association in terms of entity flavors, like this:

Association
ARTWORK — IMAGE
IMAGE — IMAGE STRUCTURE
ARTWORK — ARTWORK TYPE
ARTWORK — REFERENCE
etc.

Flavor
P —P
P —U
P - - T j
P - - P

Make sure that the parent entity (usually a dynamic principal entity) is
the left-hand entity in each pair. If you can't tell which entity should be
on the left, well, that's something you'll have to work on. (Look at the
third item in the list above.)

2. Add the "crow's foot" on the "many"
association, using the "<" character:

side of each one-to-many

Association
ARTWORK —< IMAGE
IMAGE —< IMAGE STRUCTURE
ARTWORK >—ARTWORK TYPE
ARTWORK---< REFERENCE
etc.

Flavor
P-l—<P
p -|--< u
T -1—< P
P -|--< P
etc.

Notice that the third item in the Flavor column has been revised to
place the parent entity on the left.

3. Save this list of associations until you've reviewed Validate
Cardinality and Optionality of Associations (Sec. 3, below).

3. VALIDATE CARDINALITY AND OPTIONALITY OF
ASSOCIATIONS

Now that we understand keys (mostly), let's take a closer look at
cardinality (also known as "degree") and optionality (also known as
"nature" or "kind"). Cardinality refers to the one-to-one, one-to-many, or
many-to-many character of the association. Optionality refers to its
mandatory, optional, or optional-becoming-mandatory character.

Here's the basic rule:

86 Chapter 5

Each valid association has exactly one strong mandatory "one" on
the parent side.

That "strong mandatory 'one'" is the "Each" in Business Statements like
"Each STUDENT must have one or more SHOEs."

3.1 One-to-One and One-to-Many Associations

There are three possible kinds of one-to-one associations:

\—a

H h

-̂o+̂
In other words,

• Each X may relate to exactly one Y.
• Each X must relate to exactly one Y.
• Each X will eventually relate to exactly one Y.

Likewise, there are three one-to-many associations:

o^

^

4—CN Y
In other words.

KEYS AND VALID ASSOCIATIONS 87

• Each X may relate to zero, one, or many Y. (= "Each X must relate
to zero, one, or many Y.")

• Each X must relate to one or many Y.
• Each X must eventually relate to one or many Y. (= "Each X may

relate to zero Y right now, but will relate to one or many Y over
time.")

3.2 Many-to-Many Associations

So what about many-to-many associations? As we already know, many-
to-many associations are unimplementable in relational databases. So we
resolve them using an intersecting entity. Here are the flavors of many-to-
many association:

b+-o4 Y

>i M

X H - O N

We've already seen the second association:

ARTWORK bl Id
And we know how to resolve it:

ARTWORK <
ARTWORK

ARTIST

ARTIST

> ARTIST

But how do we handle the first association, the one with the "optional
many"? Well,

88 Chapter 5

becomes

where XY represents the intersecting entity.

Let's look at this map again:

We know that the intersecting entity is the child of both of the original
entities. We also know that there must be a strong mandatory "one" on the
parent side. So we can decompose our map into

• f -o^
and

^

Entity X has a mandatory-one-to-optional-many connection with a
child entity. Entity Y has a mandatory-one-to-mandatory-many
connection with a child entity. And the child entity is the same in both cases:
the intersecting entity. So when we put the two pictures together, we get

Let's try this on an example:

This means that some employees have no skills, some have one, and some
have many, but for every skill we've identified, there must be at least one
employee who has it. In Business Statement terms, "One or many

KEYS AND VALID ASSOCIATIONS 89

EMPLOYEES may have zero, one, or more SKILLs, and one or more
SKILLS must be associated with one or more EMPLOYEES."

We decompose this into

EMPLOYEE • o ^
and

N-
"Each employee may have zero, "Each skill must be associated
one, or more instances of an and with one or more instances of an
unknown entity'' unknown entity''

So when we put Humpty Dumpty back together again, we get

This reads: "Each employee may have zero, one, or many employee skills,
and each skill must be associated with one or many employee skills (i.e.,
skilled employees)."

Exercise: Resolve a many-to-optional-becoming-mandatory-many
association

This method works the same for our third kind of many-to-many
associations, the one that shows an optional-becoming-mandatory
association. Try it for yourself, starting with this:

3.3 New notions

cardinality, optionality, degree, kind, nature

3.4 Exercise: Update the list of associations in your draft
data map

1. Take the list of associations that you prepared in Section 2.11, and add
the optionality indicators for each association, using the | character for

90 Chapter 5

"mandatory," the o character for
becoming-mandatory":

'optional," and |o for "optional-

Association
ARTWORK -|--|< IMAGE
IMAGE -1—o< IMAGE STRUCTURE
ARTWORK TYPE-|--|< ARTWORK
ARTWORK-|—o< REFERENCE
etc.

Flavor
P-|--|<P
p. | . . .o<U
T-|--|<P S
P- | - -o<P
etc.

2. For each pair of entities, write the equivalent Business Statement:
a) Each ARTWORK must be shown in one or more IMAGEs.

Each IMAGE may have zero, one, or more IMAGE
STRUCTURES.
Each ARTWORK TYPE must describe one or more
ARTWORKs.^^
Each ARTWORK may be described in zero, one, or more
REFERENCES.
etc.

3. Compare each of these Business Statements to the ones that you used
in building your data map. Make revisions as necessary.

4. If you revise a Business Statement, go back to your associations list
(step 1, above) and revise the association between the relevant entities.

5. If you revise an association, revise your data map.
6. Using your revised associations list as a guide, complete the table of

primary and foreign keys that you started in Section 1.6.

b)

c)

d)

e)

4. VALIDATE ASSOCIATIONS ON THE DATA MAP

If you've been doing the exercises at the end of each step, you've
probably been revising your data map. That's what happens when you think
about things in more detail.

Actually, we should map this as ARTWORK TYPE -|—o< ARTWORK: "Each
ARTWORK TYPE may describe zero, one, or more ARTWORKS." After all, you will
probably want to populate the list of artwork types first, then associate an artwork with an
existing type when you enter it into your database. So we should define the association so
that an ARTWORK TYPE can be unused (at least initially).

KEYS AND VALID ASSOCIATIONS 91

You're now in a position to test the associations on your data map.
Below you'll find lists of valid, "red flag," and invalid associations. They're
mostly concerned with one-to-one and one-to-many associations, since you
have probably resolved all the many-to-many associations already. Check
your own associations list against these lists, and make any changes you
think are necessary. Then revise your data map (again).

For reference, we'll repeat the summary of the one-to-many relationships
that are possible with various flavors of entities:

Flavor
Principal (P)
Intersecting (I)
Secondary (S)
Type(T)
Role (R)
Structure (U)

Can be a Parent to
P,R,S,U, I,T^
I
s^ p, R, u, I
R,P,S
U
None

Can be a Child to
T, P, S
P, S, I
T, P, S

P̂
T, P, S
P, S^ R

^ A dynamic principal entity cannot be a parent to a T entity. A static principal entity can be
a parent to a T entity.

^ A secondary entity that is parent to another secondary entity is in fact a mixed
secondary/principal entity if both secondary entities descend (ultimately) from the same
parent.

^ A structure entity can be a child to a pure secondary entity or a mixed secondary/principal
entity, but the association will probably be handled at the top level, in a dynamic-PU
association.

4.1 Valid dynamic-P-to-dynamic-P associations

Here's our list of valid dynamic-P-to-dynamic-P associations:

p -
p -
p -

- o -
| - o | -
l-CK

P
P
P

P -
P -

| - o | < P

l-l< p
—

Notice that one association is omitted:

p-H-P
If you run across an association like this, you've got a spot of trouble,
because both ends of the association are the same, and the foreign key can't
be determined. That's called an equal association. We'll get to that later.

92 Chapter 5

4.2 Valid dynamic-P-to-S associations

Our list of valid dynamic-P-to-S associations is quite short:

P -1—0- S

That's the meaning of the "org chart" relationship between principal
(supertype) and secondary (subtype) entities: "Each A may be one (and only
one) B." For example, an artwork may be a painting or it may be a sculpture
or any other type; but it can be only one painting or sculpture, etc. Of course,
if the relationship isn't exclusive, if more than one subtype can apply to an
instance of P, well, then we've got roles, and we'll use a role entity to
straighten things out.

4.3 Valid dynamic-P-to-R associations

That said, we have only one vahd association for dynamic-P-to-R:

p - | - | < R

For example, "Each EMPLOYEE must have one or more EMPLOYEE
ROLEs." An employee cannot be an employee without a role, and that
means that an employee cannot start without a role and then acquire one
over time.

4.4 Valid dynamic-P-to-I associations

In its associations with dynamic P entities, an intersecting entity is
always the child entity, and it always resolves a many-to-many association,
so only one-to-many associations are valid for P-to-I. But all three flavors
are vahd:

P -I—1< I I I P - I—o< I -o[<I

4.5 Valid dynamic-P-to-U associations

Likewise, only one-to-many associations are valid for dynamic-P-to-U.
And, as with an intersecting entity, all three flavors are valid:

P - -~ < U P - -~o< U P - - - o k U

KEYS AND VALID ASSOCIA TIONS 93

4.6 Valid T-to-P associations

A dynamic P is the child in a T-to-dynamic-P association, so we have
three vaHd flavors:

T - - - < P T- —o< P T -I—ok P

Actually, the first association is pretty much equivalent to the second. If
every instance of T is used in P, T -|—1< P: all w êll and good. If not, well,
you can easily define an instance of T (call it "type 0" [zero]) and give it the
name of the P entity. Then, any instance of P that doesn't relate to a subtype
can be designated "type 0". The effect is the same as defining the association
as T -|—o< P. As a practical matter, you will probably want to use T -|—o|<
P for most situations.

As for the "mandatory" on the P side (the first association above), think
of it as a restriction: each type must have at least one instance of P
associated with it. But it's common to create types in anticipation that
something of that type will exist. For example, you create an art gallery that
has only paintings in it. But you would define a type called SCULPTURE
expecting that someday you will add a statue to the collection (the third
association above). Declaring the association "optional" on the P side (the
middle association above) lets a type category be empty if necessary.

4.7 Valid T-to-R associations

We get a similar situation with T-to-R associations. A role entity is
always a child entity, so no one-to-one associations apply. All three one-to-
many associations are valid:

T -|->-|< R Unlikely \ \ T -|—o< R | | T-|—o|<R

The first of these associations is unlikely: a type isn't usually required to
have an association with a role.

4.8 Valid R-to-U associations

A structure entity can be a child to a dynamic principal entity (in an
exclusive type relationship) or to a role entity (in an inclusive type
relationship). Only one-to-many associations are valid for R-to-U, As with
an intersecting entity, all three flavors are vaHd:

R - - - < U R -|-,-o< u I I R -I—o|< U

94 Chapter 5

4.9 Valid static-P-to-any associations

A static principal can be parent to any flavor of entity, including another
static principal entity (an unlikely prospect). It can also be a child to another
static principal entity, but not to any other kind of entity. Only one-to-many
associations are vaUd for static-P-to-any (where "any" = any other flavor of
entity). The association is not identifying. All three flavors of one-to-many
association are vahd:

static P - — < any static P -|—o< any | | static P -|—o[< any

4.10 Red Flags

Let's look now at some "red flag" associations:

- 0—O-

-|o—o<
- 0 — 0 <
- 0 — 0 <

In each case, the relationship between the entities is unclear, because we
don't have a strong "mandatory one" on one side. Now, in the first three we
do have an optional-becoming-mandatory relationship defined on one side,
and in the last case we have a parent defined. So we can say with reasonable
certainty which table is going to be dependent (i. e., contain a foreign key).

What do you do if you have one of these connectors in your data map?

1. Go back to the original Business Statement and see if you've
translated it correctly.

2. Try writing out the relationship in clear English (or whatever language
suits you).

3. Go back to your subject matter expert and ask more questions.

You may be able to rewrite the association based on good evidence and
reasoning.

Here are some more "red flag" associations:

— 0 <

- o | -
—o-

— 0 <
—<

- l<
In each case, we're missing that strong "mandatory" on one side. As a

result, we have associations that are essentially undefined (and therefore
unimplementable in their current state). If you're mapping by hand, these

KEYS AND VALID ASSOCIATIONS 95

connectors are usually transcription errors, pure and simple. But check them
to be sure, and gather more information if necessary.

4.11 "Equal" associations

Here are some more "red flags":

-|o-o|-
- 0 — 0 -

-l-l-

>|o—o|<
> 0 — 0 <

>l-l<
All of these are equal associations—the same on each end.

If we remember that entities are realized as tables, the problem with
equal associations becomes clear. We don't know which table is going to
contain information about the other. Will it be the left-hand one or the right-
hand one? Worse, it might be both, and then we'd have information
duplicated in or divided between two tables.

4.12 "Equal" many-to-many associations

Notice that the right-hand three associations in the list above are many-
to-many associations. It's worth looking at them in a little more detail. Let's
imagine two dynamic principal entities, X and Y, and an intersecting entity,
XY:

1. X >|o—o|< Y resolves to X -|—o|< XY >|o—|- Y.
2. X >o—o< Y resolves to X -|—o< XY >o—|- Y.

3. X >|—1< Y resolves to X -|—1< XY >|—|- Y.

In each case, the dynamic-P-to-I association is valid.

Here are a few other many-to-many associations:
X >|—o|< Y resolves to X -|—o|< XY >|—|- Y.
X >o—o|< Y resolves to X -|—o|< XY >o—|- Y.
X >o—1< Y resolves to X -|—1< XY >o—|- Y.

Again, in each case, when we resolve the many-to-many association into two
one-to-many associations, the resulting associations are vaUd.

But what if we hadn't resolved these associations? Well, many-to-many
associations just are not implementable in a relational database: you have to
resolve them.

96 Chapter 5

On the other hand, many-to-many associations can be implemented in
object-oriented database systems. Check with your project manager or IT
manager about the target system and the methods that will be used—^but
don't count on an object-oriented system to bail you out of a difficult
analysis problem.

4.13 Optional-one-to-mandatory-many

Finally, let's look at the dog of the bunch:

X -o—1< Y

This is unimplementable. If we try to read it, we don't know whether we've
got a may or a must relationship: it's saying one thing on one side of the
sheet, and another thing on the other side. Solution: go back to the subject
matter expert. There may be entities out there that have yet to be identified.

4.14 Valid Associations Summary: Dynamic P, I, T, R, S

Association
P -1—0- P
P-l—o|-P
P-j—0<P
P-|™o|<P
p-l—l<p
P -1—0- S
P-l—|<R
P -1—1< I
P -1—o< I
P -1—o|< I
P -1—1< U
P -1—o< U
P-l—o|<U
I -1—0- I
I - l -o j - I
I -1—o< I
I-l—o|<I
I-I-I<I
T -1—1< P
T -1—o< P
T -1—o|< P
T -1—1< R
T -1—o< R
T -1—o|< R

Comment
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok 1
Ok
Ok i
Ok
Unlikely
Unlikely
Unlikely
Unlikely
Unlikely
Ok
Ok
Ok
Unlikely
Ok
Ok 1

KEYS AND VALID ASSOCIATIONS 97

Association
R-H<U
R .|.-.o< U
R -|--o|< U
S -1—o< S

Comment
Ok
Ok
Ok
Ok

4.15 Valid Associations Summary: Static P

Association
static P -|—o< any
static P -|—o|< any
static P -|—-|< any

Comment
Ok
Ok
Ok

4.16 "Red Flag" Associations Summary^

o—o-
-|o--o<

o—o<
-O— (X

—(K
^ ^

—o-

- o | <
—<
— <

Jo:::o|:
-o—o-

-o—1<

4.17 Exercise: Check your associations list for validity

1. Take the associations list that you updated in Section 3.4, above, and
check each association against the valid associations given in the
summary table above.

2. Note any associations that are indicated as "unlikely." Rethink them.
3. Check any remaining associations against the "Red Flag" associations

listed in the table above. Rethink and revise.
4. As necessary, update the data map and the list of primary and foreign

keys.

Many-to-many associations are omitted because you should be able to resolve them.

Chapter 6

THE ART GALLERY WEB (CONTINUED)
Wherein Dr. Pangloss tries to get it right

"Next, [says Dr. Pangloss,] I turned to attributes. First, I associated
attributes with entities based on the business rules. Then I identified primary
keys."

9. Identify Attributes - draft

ARTWORK

ARTIST
MAGE
LOCATION
REFERENCE
PAINTING
SCULPTURE
ARCHITECTURE
DECORATION
OTHER

title, creation date, accession number, classifiers (era, origin, period
style, subject, affinity group), comment
name, pseudonym, active dates
filename
name, city, country
author, book title, publication date, place of publication, publisher
same as ARTWORK
same as ARTWORK
same as ARTWORK
same as ARTWORK
same as ARTWORK

"This Ust should have told me something immediately. Subtype entities
are used for storing different data about different subtypes. If the attributes
for PAINTING are the same as those for ARTWORK, then why have
PAINTING as a distinct entity? If I were keeping information about media
('oil on panel' and the like), then PAINTING would have to have a 'media'
entity. But I'm not.

"I got the message eventually."

100 Chapter 6

10. Define Primary Keys for Principal Entities

ARTWORK
ARTIST
IMAGE

artwork no#
artist no#
fi]ename#

LOCATION
REFERENCE

location no#
reference no#

"It was easy for me to decide that, except in the case of IMAGE, I would
have to generate a serial number as the primary key for each principal entity.
Names, whether of people, books, or works of art, are no good as unique
identifiers, and what constitutes a LOCATION is a bit problematic. But an
instance of IMAGE is uniquely identifed by its filename because the only
kind of image we're using is an electronic file. Two different files can't have
the same filename and be in the same space (folder/directory), and the files
we're using are all in a few specific, well-controlled directories.

"In order to identify foreign keys, I had to take the next step and create
the required meta-entities."

/ / . Second Draft Data Map

IMAGE
STRUCTURE ^

ARTWDRK
TYPE

N

LOCATION
STRUCTURE ^

A.

A.
J

ARCHITECTURE

ARCHITECTURE
STRUCTURE

-< ARTWORK
STRUCTURE

^ ARTIST - ^
ARTIST

STRUCTURE

DECORATION

Added entities
o ARTWORK TYPE
o IMAGE STRUCTURE
o ARTIST STRUCTURE
o ARTWORK STRUCTURE
o LOCA TION STRUCTURE
o ARCHITECTURE STRUCTURE

"From this draft, I derived the foreign keys."

THE ART GALLERY WEB (CONTINUED) 101

12. Define Primary and Foreign Keys

ENTITY
ARTWORK

ARTIST
IMAGE
LOCATION
REFEJ^ENCE
PAINTING
SCULPTURE
ARCHITECTURE
DECORATION
OTHER
ARTWORK TYPE
IMAGE STRUCTURE
ARTIST STRUCTURE
ARTWORK
STRUCTURE
LOCATION
STRUCTURE
ARCHITECTURE
STRUCTURE
ARTWORK ARTIST

Primary Key
artwork no#

artist no#
filename#
location no#
reference number#
artwork no#
artwork no#
artwork no#
artwork no#
artwork no#
artwork type no#
filename#, filename#
artist no#, artist no#
artwork no#, artwork type no#,
artwork no#, artwork type no#
location no#, location no#

artwork no#, artwork no#

artwork no#, artist no#

Foreign Key
artwork_type_no#,
location_no#
artwork_no#
artwork_no#

artwork_no#

location_no#

"I deleted the ARCHITECTURE STRUCTURE entity when I saw that
every instance could be accommodated in the ARTWORK STRUCTURE
entity. I added ARTWORK ARTIST when I realized I'd missed the many-
to-many relationship between ARTWORK and ARTIST at the Business
Statement level. Then I revised the data map again."

102 Chapter 6

13. Third Draft Data Map

IMAGE
STRUCTURE ^ IMAGE ^

ARTWORK
TYPE

LOCATION
STRUCTURE P-

A.

-4

A

J

ARCHITECTURE

- ^ ARTWORK
STRUCTURE

ARTIST
STRUCTURE

~T

M ARTWORK
ARTIST N

DECORATION

ARCHITECTURE
STRUCTURE

"Now I could create a more formal draft attribute list. I classified the
attributes according to Mr. Finkelstein's types and wrote them according to
his conventions."^ Also, I added attributes that hadn't occurred to me when I
wrote the business rules. And I chose names that would ensure that an
attribute would exist in one and only one entity. I'm not worried about how
long these names are: they'll change when they are translated into column
names in the physical database."

14. Draft Entity List

ENTITY

ARTIST

LOCATION

IMAGE
REFERENCE

primary kev#

artist no#

location no#

filename#
reference no#

foreign key#

artwork_no#
artwork_no#

[selection
attribute]

[country,
city]

[reference
author]

(group
attribute)
(artist
name,
artist
dates)

(reference
title)

' Finkelstein 1992: 35-38. The various types of attributes are discussed in Chapter 7.

THE ART GALLERY WEB (CONTINUED) 103

ENTITY

ARTWORl^

ARCHITECTURE
PAINTING
SCULPTURE
DECORATION
OTHER
ARTWORK
ARTIST
ARTWORK TYPE

ARTWORK
STRUCTURE
ARTIST
STRUCTURE
LOCATION
STRUCTURE
MAGE
STRUCTURE

primary kev#

artwork no#

artwork no#
artwork no#
artwork no#
artwork no#
artwork no#
artwork number#,
artist number#
artwork type no#

artwork no#,
artwork type no#
artist no#

location no#

filename#

foreign key#

artwork_type_no#,
location_no#

location no#

artwork_no#,
artwork_type_no#
artist_no#

location_no#

filename#

[selection
attribute]
[genre, era,
origin,
period style,
affinity
group]

[artwork
type name]

(group
attribute)
(artwork
date)

ENTITY

ARTIST

LOCATION
IMAGE

REFERENCE
ARTWORK

ARCHITECTURE
PAINTING
SCULPTURE
DECORATION
OTHER
ARTWORK
ARTIST
ARTWORK TYPE

((repeating group
attribute))

((subject, artwork
comment,
citation))

{derived
attribute}

other attributes

artist pseudonym, artist
alphabetizer, artist active year
location name, location URL
copyright owner, image
accession number, image
focus, image comment

artwork title, artwork
accession number, artwork
alphabetizer

artwork artist relationship

104 Chapter 6

ENTITY

ARTWORK
STRUCTURE
ARTIST
STRUCTURE
LOCATION
STRUCTURE
IMAGE
STRUCTURE

((repeating group
attribute))

{derived
attribute}

other attributes

artwork relationship

artist relationship

location relationship

image relationship

"Perhaps I should have done this before, but I found it easier at this stage
to write definitions for all the attributes. This exercise made me think more
deeply and exposed further points for revision. As always, I noted my
thinking as I encountered problems"

75. Attribute Definitions

1 Entity
ARTIST
ARTIST

ARTIST

ARTIST

ARTIST

ARTIST

LOCATION
LOCATION

Attribute
artist no#
(artist name)

(artist dates)

artist
pseudonym

artist
alphabetizer

artist active
year

location no#
[country]

Definition
serial number
name of artist: first
name, last name
dates of artist's
birth, death,
activity, or
florescence
alternative name
for artist; often the
better known name
term that will be
used when
alphabetizing the
artist; usually part
or all of the name
or pseudonym
number that will be
used for
constructing a
timeline; usually
the midpoint in the
artist's life
serial number
name of the nation
in which the
location resides

Examples

Paolo Caliari, Bonifacio de' Pitati,
C. B. van Everdingen
1528 - 1588, ca. 1375 -1444, act.
1475/1510

Veronese, Bonifacio Veronese

Veronese, Pitati, Everdingen

1558, 1405, 1492

United Kingdom, Germany

THE ART GALLERY WEB (CONTINUED) 105

i Entity
LOCATION

LOCATION

LOCATION

1 MAGE

MAGE

MAGE

MAGE

MAGE

REFERENCE

REFERENCE

REFERENCE

ARTWORK
ARTWORK

Attribute
[city]

location name

location URL

filenanie#

copyright
owner

image
accession
number

image focus

image
comment

reference no#

[reference
author]

(reference
title)

artwork no#
[genre]

Deflnition
name of the city in
which the location
resides
name of the
location
URL of the
location
name of the image
file
owner of the
copyright of the
image; not
currently used
number assigned
by the copyright
owner to the
image; not
currently used
term indicating the
relationship of the
image to the
artwork
text describing the
quahty of the
image

serial number

name of the author
or authors of the
reference work:
first name, last
name
title of the
reference work

serial number
descriptor for kind
of content
represented in or
by the artwork

Examples
London, Berlin-Dahlem

National Gallery, Gemaldegalerie
Alte Meister, Lenbachhaus
http://www.land-
sbg.gv.at/residenzgalerie/
aa003.jpg

detail

Note: The slides from the Tate
and the Victoria and Albert have
for the most part faded badly, and
the image colors are unreliable.
Consider replacing this with a
standard citation form—for
example, "Beck 1981."
Should be a group attribute or
repeating-group attribute, not a
selection attribute.

Should be broken out into title,
publication information, and title
structure, i. e., volume number,
edition number, etc.

portrait, altar, historical, landscape
Should be a repeating-group
attribute.

106 Chapter 6

Entity
ARTWORK

ARTWORK

ARTWORK

ARTWORK

ARTWORK

ARTWORK

ARTWORK

ARTWORK

ARTWORK
ARTWORK

ARTWORK

ARTWORK
ARTIST

Attribute
[era]

[origin]

[period style]

[affinity
group]

(artwork date)

((subject))

((artwork
comment))

((citation))

artwork title
artwork
accession
number
artwork
alphabetizer

artwork artist
relationship

Definition
name of the
historical period
associated with the
artwork
name of the society
or social group
associated with the
artwork
name of the
stylistic group
associated with the
artwork
name of the group
of artists associated
with the artwork

date or dates of
creation of the
artwork

content represented
in the artwork
textual
commentary on the
artwork

source and page
numbers for the
textual
commentary on the
artwork

title of the artwork
designator of the
artwork in the
museum holding it
term used for
alphabetizing
artworks in lists
term describing
any special
relationship
between the

Examples
Renaissance

Benin, Apache
Should be a repeating-group
attribute.

Pre-Raphaelite, Baroque,
Impressionism

Pre-Raphaelites, Modern
American Impressionists
Should be moved to ARTIST or
deleted.
ca. 1638/40, 1611/12, ca.
1620/30? 1635/38?, after 1640,
1629
Obviously, an artwork date is
composed of an optional modifier
(ca., fl., etc.) and a year. This
could be handled as two attributes.
Madonna and Child, St
Christopher
An unfinished portrait in the
Dulwich Picture Gallery has been
identified, doubtfully, as of the
Duchess.
Dejardin 138-39
The citation source is the foreign
key relating the artwork to the
reference. Error in Business
Statement: should be
ARTWORK>|—o<REFERENCE.
The Four Philosophers
1890 no. 1165

Four Philosophers

attributed to, workshop of.
follower of

THE ART GALLERY WEB (CONTINUED) 107

Entity

ARTWORK
TYPE

ARTWORK
STRUCTURE

ARTIST
STRUCTURE

LOCATION
STRUCTURE

MAGE
STRUCTURE

Attribute

[artwork type
name]

artwork
relationship

artist
relationship

location
relationship

image
relationship

Definition
artwork and the
artist
type of artwork
(usually indicates
medium)

term describing
relationship of
artwork to artwork
term describing
relationship
between artist and
artist
term describing
relationship
between location
and location
term describing
relationship
between image and
image

Examples

painting, sculpture, architecture.
decoration, other
Probably will be made attribute of
ARTWORK.
contained in, part of

working with
Possibly unnecessary: can be
subsumed in ARTWORK
ARTIST.
contained in
Possibly unnecessary: can be
subsumed in ARTWORK
STRUCTURE.
thumbnail of
Possibly unnecessary.

"As I drew the 4̂ ^ draft data map, I made decisions based on my notes on
the attribute definitions, and I revised the Entity-Entity Matrix and
subsequent documentation. [Changes omitted from the text above.]
Specifically, I decided:

• We weren't going to discuss artists apart from their art, and
therefore we didn't really need ARTIST STRUCTURE. If an
artwork was created by more than one artist, that would be shown in
ARTWORK ARTIST, and so could relationships like 'workshop of
or 'follower of.'

• I retained LOCATION STRUCTURE to allow for named
collections within museums, and I retained IMAGE STRUCTURE
on the intuition that it would be at least as easy to associate an image
with its thumbnail as it would be to create an ARTWORK IMAGE
intersecting entity that would have two instances for every artwork.

• The case of a location being itself a work of art is rare, so it seemed
reasonable to get rid of the association between LOCATION and
ARCHITECTURE. This rare case could be handled by
denormalization: by recording the same building in both
LOCATION and ARTWORK.

• Deleting this association allowed me to delete all the subtypes and
replace them with an 'artwork type' attribute in ARTWORK. I had

108 Chapter 6

noticed that I'd omitted an important type (graphics) and likely had
omitted others. More importantly, no special information needed to
be stored relating only to a specific type.

• Fd discovered I'd missed part of the relationship between
ARTWORK and REFERENCE: an artwork have comments from a
number of references. Initially, I created an intersecting entity called
ARTWORK REFERENCE. But when I looked at the new entity's
compound primary key (artwork no#, citadonf), I realized that it
wasn't unique: an artwork might have more than one comment from
the same reference.

• Also, I started thinking that if I defined 'comment' as a repeating-
group attribute, I was going to burden the ARTWORK table with a
lot of chunks of text. Maybe this is not a problem for a modern
database, but I suspect it is. So I ditched ARTWORK REFERENCE
in favor of COMMENT, which would have a serial number primary
key, 'comment' and 'pages' as non-key attributes, and
artwork_number# and citation# as foreign keys. (Actually, the entity
name doesn't matter: it still provides the functionality of an
intersecting entity, just with an originating primary key.)

"And so I produced the next revision."

16. Fourth Draft Data Map

^

IMAGE
STRUCTURE

LOCATION
STRUCTURE

^

^

^

^

- ^ ARTWORK
STRUCTURE

- ^ ARTVVORK
ARTIST N

[To be continued ...]

Chapter 7

DEFINING ATTRIBUTES
Wherein we do a lot of detailing

As you approach the fatal threshold—talking with the database people—
you have to develop more detailed information about the entities you've
identified. We're talking about attributes.

Let's start by summarizing what we know:

• An attribute is a characteristic of an entity. More precisely, it is a
defined category of meaningful information within the entity—like
address-zipcode in the entity ADDRESS.

• Just as entities usually become tables in the database, attributes
usually become columns in the table.

• Primary keys and foreign keys are attributes. (Non-key attributes are
also attributes.)

• Standard Form VI lists an entity's attributes.
• Standard Form VII lists an attribute's properties.

It's not uncommon to mistake an attribute for an entity. For example,
consider the secondary entities of ARTWORK: PAINTING, SCULPTURE,
ARCHITECTURE, DECORATION, OTHER. If we're going to keep
information about paintings that we don't keep about sculptures, such as
medium and substrate ("oil on Hnen"), then PAINTING is an entity and
painting-medium and painting-substrate are attributes of PAINTING.

But maybe we're going to record the materials that each artwork is made
of We could have artwork-material as one attribute of ARTWORK and
artwork-genre as another. If PAINTING has no attributes other than primary
or foreign keys, it isn't being used to store painting-specific information, and

n o Chapter?

thus it's not an entity. Instead, maybe "painting" is a value of the attribute
artwork-genre, along with "sculpture," "architecture," "drawing," and any
others we like.

In sum, an entity defines the information that it will store about its
instances. Within the entity, attributes identify the specific kinds of
information that will be stored for those instances.

One thing about attributes makes them like entities: a particular attribute
can exist only once in the properly normalized data model (except, of course,
for foreign keys). Consequently, a particular attribute can exist in one and
only one entity. That doesn't mean you can't have more than one date or
comment or citation as an attribute in your data model. But the date an
account was opened and the date a withdrawal was made are two different
dates, represented by two different attributes.

It isn't always easy to say what attribute should be assigned to what
entity. That's a matter for case-by-case analysis. But when it comes to
principal and secondary entities, there is a general rule: assign the attribute
to the highest-level (most general) entity for which it is meaningful. If an
attribute applies to all instances of the parent entity, whatever their category,
assign it to the parent. That's what we did with ARTWORK, artwork-
material, and artwork-genre.

Now it's time to define attributes more fully, in terms that the Database
Administrator can use. You'll need to

• distinguish different kinds of attributes
• define each attribute's properties completely.

One thing, though. You're doing logical data modeling, not physical data
modeling. That means you'll be defining attributes from the business point
of view. Let the database people define the specifics of implementation.
We'll clarify this point a bit as we go forward.

1. KINDS OF ATTRIBUTES

Here's the basic list:

• Primary key
• Foreign key
• Selection attribute
• Group attribute

DEFINING ATTRIBUTES 111

• Repeating group attribute
• Derived attribute
• Non-key attribute (i. e., none of the above).

1.1 Primary key

A primary key uniquely identifies what will become a row in a table. It
may be one atomic (i.e., indivisible) attribute or more than one: one column
or more than one column. Whether atomic or not, the primary key may
originate in the current entity, or it may be inherited, all or in part, from one
or more parent entities. The inherited attributes are, of course, foreign keys
in the child entity.

All components of the primary key have to be documented. If the
component originates with the entity, say so. If it is inherited, well, keep
reading.

1.2 Foreign key

A foreign key is an atomic attribute. For documentation purposes, you
will need to record

• the entity where the key originated
• the intervening entities, if any, through which the key was copied

down on its way to your child entity
• whether the foreign key is part of a compound primary key.

If the foreign key exists in a structure entity as part of the primary key,
you will need to assign it an alias (such as parent or child, superior or
subordinate). After all, a structure entity will have a two-part foreign key
inherited from instances of the same parent entity. One part of the key will
identify one instance, and the other will identify the related instance. The
alias is the label that distinguishes between the two instances.

1.3 Selection attribute

A selection attribute (sometimes called a "secondary key") is an attribute
or combination of attributes that can be used for searching through the
instances of an entity and pulling out those that match. In physical database
terms, it's something you may want to index.

112 Chapter?

Usually, choosing selection attributes is something that's done during
physical data modeling, when the database people can weigh in with all the
methods at their disposal. But if your users are going to get what they want,
you have to think about selection attributes in business terms.

Consider the poor folks in Human Resources. They aren't always going
to have the employee ID number (the primary key) available when they
search the employee database. Instead, they'll search by last name, then
select the right employee from a hst of all employees having that same last
name.

In fact, every principal or secondary entity that has an artificial primary
key (like a student ID number or employee ID) is probably going to need a
selection attribute. Artificial primary keys are good for ensuring that every
instance is unique, but they aren't much good for browsing. It's inevitable
that some attribute or combination of attributes will do better at specifying
the real-world meaning of each instance.

Meta-entities have similar qualities. If the entity—say, a type entity—has
an originating primary key, that key (tvpe no#) is artificial, and there will be
a name attribute (type-name). If the entity is going to hold other information,
the name attribute makes a good selection attribute for accessing that
information. A role or intersecting entity may likewise have a name
attribute, even if it doesn't have an originating primary key.

Other attributes may also be useful as selection attributes. For example,
you may want to know what museums exist in a particular country. The
"country" attribute of the MUSEUM entity would be a convenient selection
attribute.

During implementation, the database people will decide whether to build
an index based on your selection attribute or whether, instead, to let searches
be done on the fly. Your only concern should be to reflect the business
reality: what your users search for, and how. As you work more closely with
the database people, you'll become more sensitive to patterns of usage, and
you'll be better able to define good selection attributes.

lA Group attribute

A group attribute is not an atomic attribute. Instead, it is a container for a
set of atomic attributes. For example, employee-name might contain first
name, middle name, last name, suffix (Sr., Jr., Ill, etc.), and so forth. In
another country it might be broken down into a personal name, a prefix (bin.

DEFINING ATTRIBUTES 113

al-), father's name, another prefix, family name, and so forth. In yet another
country, we might have a family name and a given name—like, for instance,
Chiang Kai-Shek.

Code numbers often turn out to be group attributes, with different
meaningful components in different positions. For example, Fischer
Connectors structures some of their part numbers like this:"̂ ^

Part Number
Example

Part Number
Elements

Description

S 101 A004-2/2.8

S

Body
Type

101

Series

A004

Contact
Configuration

-2

Options

/2.8

Indicates cable clamp is
included

A group attribute is a certain kind of shorthand. It's used to keep
attributes together that will be broken out during implementation and appear
separately in the physical data model.

1.5 Repeating group attribute

Like a group attribute, a repeating group attribute (also known as a
"repeating attribute," "repeating group," "multi-value attribute") is a
container. But instead of containing different things, it contains a number of
instances of the same thing.

For example, an artwork may have a number of subjects. For example,
Raphael's Terranuova Madonna shows Mary, the Christ Child, two saints,
and a landscape. So we could define artwork-subject as a repeating group
attribute for the entity ARTWORK. ARTWORK would have instances like
this:

artwork id#
1
2
3

artwork-name
Terranuova Madonna
Baptism of Christ
Allegory of Time and Love

artwork-subject
Mary, Christ Child, saint, landscape
Christ, saint, angel, landscape
Venus, Cupid, allegory

In documenting a repeating group attribute, you will have to define the
minimum and maximum number of items that the attribute will contain. But

Adapted from the Fischer Connectors website,
http://www.fischerconnectors.eom/order/order.htm#101. Code structures are discussed in
detail in Burch and Grudnitski 1989: 193ff.

114 Chapter?

you needn't put too fine a point on it. Your repeating group attribute isn't
long for this world, as you'll see when we consider normalization.

1.6 Derived attribute

A derived attribute is an attribute that is created from attributes of the
same or other entities. Almost always, a derived attribute is the result of
some calculation by formula or aggregation from multiple values of other
attributes. Here are a few examples:

• date-hijri (date according to the Islamic calendar) is derived by
formula from date-Gregorian or date-JuUan, or vice versa

• days-elapsed is derived by subtracting date-start from date-current
(or date-end, or whatever)

• requirement-value is derived by multiplying requirement-score by
requirement-weight

• current-account-balance is probably derived by adding your bank
account's month-end-account-balance to the aggregate of
transactions (deposits and withdrawals) since end-of-month.

You may well ask: Why include a derived quantity in a database, when
you can always calculate it? That's a question for the database people to
answer. From the business side, your primary concern is to record it as an
attribute and, if possible, define the formula for deriving it.

But there are a lot of calculations involved in business. Which ones do
you represent as derived attributes?

Let's take date-hijri as an example. People in your business area make
certain decisions based on the Gregorian date of a transaction. They make
other decisions based on the Hijri date—say, a birth date or the
commencement of an Islamic holiday. One date comes from one place,
another from another. But time is time, and a day is a day, whatever the
calendar.

The database people may decide that all dates will be calculated on the
fly, whatever the calendar and purpose. They may decide, on the other hand,
that it's cheaper to calculate once and store the result. That's their business,
though, not yours.

Another example, closer to home. The month-end balance in your
checking account is derived each month from the previous month's balance
and the transactions during the month. It only makes sense to store that

DEFINING ATTRIBUTES 115

month-end balance, rather than recompute it each month starting from when
you opened the account.

A derived attribute should never serve as a primary key. Other than that,
it's hke every other attribute: (1) a characteristic of an entity and (2)
information that is worth storing.

One last note: because a derived attribute does depend on other attributes,
it may pose problems for normalization. If the derived attribute can be
placed in the same table as the attributes it depends on, you avoid those
problems. But often that isn't possible. In the case of your checking account,
for example, it's doubtful that transaction information would be stored in the
same database table as month-end balance.

2. DEFINING ATTRIBUTE PROPERTIES

It may seem tedious, but it's necessary: you must eventually define every
attribute in detail. We'll start with a list of the properties you'll need to
define, then go back and discuss each one:̂ ^

• Name
• Description
• Kind of attribute
• Edit rules
• Domain
• Related planning statement(s)
• Other items like abbreviations and acronyms used in the

organization (as necessary).

2.1 Name

The rules for naming attributes are pretty much the same as those for
naming entities. The name is

• a singular (not plural) noun
• the term used in the business
• unique within the data model

^^ This situation is considered in more detail in Reingruber and Gregory 1994.

116 Chapter?

• NOT a reserved word'̂ l

You'll want to avoid special characters (~, @, &, and the like). Of
course, the hash mark (#) has a particular meaning and use. Also, avoid
particular names, like the names of organizations or systems: particulars are
data, not kinds of data, and they are incUned to change. If your project
organization has a naming convention, follow it. Often, database
applications impose limitations on the length of an attribute name.

Of course, different departments may have different names for the same
attribute. Since you're developing a single database, you'll have to develop a
standard name for the attribute. And different departments may use the same
name for different attributes. That means you'll have to develop a set of
standard names. Since the names you choose may affect the user interface
(data entry, reports, etc.), you may have to enter into negotiations with the
departments.

2.2 Description

The database you're designing may well have a long life. That means that
it will be maintained by people who weren't in on its design and
development. The descriptions that you write will have to communicate
clearly to those people.

This applies whether you're describing attributes or entities. Your
description must be

• About what the attribute or entity is, not when, where, or how it's
used

• Understandable on its own, independent of other definitions
• Expressed in terms that are clear to the business audience, with a

minimum of technical language and acronyms.

What you want to communicate, in the end, is a complete account of the
attribute or entity itself, why it's important to the business, and why it's in
the data model.

^^ A word used for special purposes by your database application program and thus
unavailable for other uses.

DEFINING ATTRIBUTES 117

2.3 Kind of attribute

This is simple enough. What kind do you have? Choose one or (as
necessary) more, and add additional information as required:

Primary
key

Foreign key

Selection
attribute

Group
attribute
Repeating
group
attribute

Derived
attribute

Non-key
attribute

Name the component attributes, if the key is compound. If the key, wholly or
in part, is a foreign key, add documentation for the foreign key. Notation:
primary key#.''^
Identify the key's parent entity or entities, starting with the originating entity
or entities. Notation: foreign_key#.
This is also known as a secondary key or an alternative access key. Where an
attribute is not unique, such as employee last name, it can still be used to
locate each employee with the same name. When physically implemented, this
attribute might be indexed with a non-unique index (that is, duplicates are
allowed): many Jacksons may, for example, be employees. Notation:
[selection_attribute].
Name the component attributes. Notation: (group_attribute).

This is a non-key attribute appearing one or more times within an entity, such
as (for example) the names of all of an employee's dependent children. Break
this attribute out into another entity on the many side of a one-to-many
association. Notation: ((repeating_group_attribute)).
Give the formula, using the exact names of any other attributes involved. For
each of those other attributes, give the name of the entity in which it resides.
Give any conditions that affect the derivation. Notation: {derived_attribute}.
This is a fundamental data attribute. It is not a key, nor is it any kind of
selection, group, repeating group, or derived attribute. Notation:
non-key_attribute. 1

2.4 Edit rules

When you add an instance to an entity, you add some or all of the
particular information about that instance. Later, you may or may not add
more information, and you may or may not change the information you've
already stored.

Edit rules govern the creation and updating of information in an attribute.
There are four kinds:

Notation for the kinds of attributes is defined in Finkelstein 1992: 35-38.

118 Chapter?

Add now and modify
later
Add now, cannot
modify later
Add later and modify
later
Add later and cannot
modify later

Information must be provided when the instance is created, but it can
be changed later.
Information must be provided when the instance is created. From
then on it's locked in and cannot be changed.
Information may be provided when the instance is created, or it can
be provided later. It can also be changed later.
Information may be provided now or later. But once it's there, it's
locked in.

Of course, adding and modifying can be done either by human beings
(through a user interface) or by any number of automated systems.

As you define attributes, you'll need to define the edit rule that governs
each one. Usually, this is easy:

• A primary key will usually be "Add now, cannot modify later." If
you are using something that can change, like last name (a bad
choice for a primary key), you will probably use a different edit rule.
Your enterprise modeling tool may require that the edit rule for a
primary key be "Add now, cannot modify later."

• A foreign key will be "Add now" so that its value will be added
whenever an instance is added to the child physical table. As for
"modify/cannot modify later," that depends on the key it was copied
from. If that key cannot change, it and the child (foreign) key will be
"cannot modify later." If the parent's primary key can change, then
the child's foreign key must be "modify later". (In physical database
design, these issues are handled under the heading of "referential
integrity," which we'll discuss later on.)

• Derived attributes will usually be "Add later and modify later." A
derived attribute depends on one or more other attributes. If you
were to set it to "Add now," you'd have to make certain that the
other attributes were already populated with values. But if you
define it as "Add later," it can be created automatically when the
other attributes are populated.

2.5 Domain

The domain of an attribute is the set of values that the attribute can take.
Essentially, you define the domain in terms of

• the kind of data AND
• (sometimes) the length of the value or the range of values.

DEFINING ATTRIBUTES 119

In common parlance, there are general domains, called "data types," and
specific domains, called "enumerated domains." An enumerated domain is a
specific, restricted set of static values. For example, the nucleotides in DNA
constitute an enumerated domain with four values: adenine, guanine,
thymine, cytosine.

When it comes to the details of domains, each database application is
different. Oracle provides options that Microsoft Access doesn't, and vice
versa. Names for these options differ too. You'll get into the details when
you work with the database people. For now, it's important to provide
enough of the right business information. Implementation decisions will
come later.

Here are several commonly used kinds of general domain:

• Character string
• Number
•

•

Binary object
Date/Time
Money

• Other.

And here are guidehnes for their definition.

2.5.1 Character string

A character string has two general characteristics: it will be read, and it
will probably not be used for calculation. Thus, a ZIP code may or may not
be a character string depending on the situation: it is usually less a number,
more a string of numerals. If a ZIP code were to be used for calculations (a
situation we have trouble envisioning), it might profitably be defined as a
number. Certain character strings may be of particular interest, like email
addresses and URLs (web addresses). Many database management systems
provide specifically for these and other special character strings.

To define a character string, you need to give the kind of character and
the maximum length or range of lengths (in bytes, i.e. characters) of the
string. Generally, if you state the language or language family of the string.

120 Chapter 7

that should be enough to indicate kind. These days, text is
often implemented in Unicode/^

When you specify the length or range of a character string, you need to
say whether the length is fixed or variable. A zip code is a fixed-length
string, five or nine characters, assuming the dash between groups is omitted.
A person's age will range from zero to, let's say, 120 and thus can be
accommodated within a fixed length of three characters. Long passages of
text, on the other hand, are of variable length.

If you are going to perform arithmetic on a field, do not define it as a
character string. Define it as a number or as date/time.

2.5.2 Number

A number may or may not be read by human beings, but it may be used
for calculation. To define a number, you have to define the base: base 2
(binary), base 8 (octal), base 10 (decimal), base 16 (hexadecimal), etc. After
that, you need to say whether it is

• Decimal (that is, it has a decimal point) and how many places are
required right of the decimal point OR

• Floating-point OR
• Integer.

Finally, you define the length of the number or the range of its values. If
you can't give a precise maximum value, give a top limit for either the
number itself or the number of characters needed to represent it.

When the database people get this information, they'll make decisions
based not just on the size of the number and the required precision, but on
storage requirements as well. For example, in DB2, the data type "Smallint"
(small integer) can handle numbers from -32,768 base 10 to 32,767 base 10,
requiring two bytes of storage for each number. The data type "Int" (integer)
can handle considerably larger numbers (-2,147,483,648 base 10 to
2,147,483,647 base 10), but it requires four bytes of storage. Double the
storage requirements again, and you're using "Bigint" for big integers:

Unicode, the successor to ASCII, is a universal encoding system for all languages. If your
database application program supports Unicode, you're home free. If you want more
information, see www.unicode.org.

DEFINING ATTRIBUTES 121

-9,223,372,036,854,775,808 base 10 to 9,223,372,036,854,775,807 base 10
(Baklarz et. al 2000: 212-13). But—and it's worth saying again—these are
physical considerations and the province of the database specialists.

2.5.3 Binary object

A binary object is a graphics, sound, or video file, though it may also be
a text or hybrid-content file in a proprietary format, like a Microsoft Word
document or PDF file. For all practical purposes, it is a string of bits.

There are two ways to use a binary object as an attribute:

• To store files of one and only one specific format
• To store files of different formats.

The difference is fairly simple: in the latter situation, you will need to use a
second attribute to identify the file format.

In either case, when you document the binary object, you will need to
identify the format or formats. Are all the items going to be JPEG files? Or
MP3s? AVI files? Or will some be one, some another? If you expect to
deliver these files on a web, you should probably give the MEME type or
types."̂ ^

As for length or range, it's enough to give the size of the largest file that
might be stored. Different database appUcations define binary objects with
different size constraints: DB2 defines CLOB (character large object,
maximum 32 KB text) and DBCLOB (double byte character large object,
greater than 32 KB text), where two bytes can represent one character
(Baklarz et a/.2000: 216-217).

2.5.4 Date/Time

There are four varieties of date/time: date, time, date and time, and
interval. This last, "interval," means a length of time. It indicates how often
an event will occur or the time between events.

46 MIME is the acronym for "multipart internet mail extensions." A MIME type expression
gives the broad type of file—audio, image, video, and the like—and a subtype indicating
the specific format: midi, mpeg, bmp, jpeg, quicktime, etc. For a directory, see
http ://ww w. iana. org/assi gnments/medi a-types/.

122 Chapter 7

Date/time is often communicated with patterns called edit masks. For
example, here are edit masks for dates as understood by DB2 (Baklarz et aL
2000: 219):'^

Standard
International Standards Organization (ISO)
IBM USA Standard
IBM European Standard
Japanese Industrial Standard
Site Defined

Edit mask
YYYY-MM-DD
MM/DD/YYYY
DD.MM.YYYY
YYYY-MM-DD
"depends on database country code"

Here are guidelines and examples for describing a date/time attribute:

Date

Time

Date and
time
Interval

• Indicate the calendar if necessary: Gregorian, Hijra, Julian. If no calendar is
specified, assume Gregorian.

• Give an edit mask if possible.
• Give examples, especially if the name of the month is going to be written

out or abbreviated.

• Give an edit mask if possible: HH:MM:SS.
• Indicate whether hours will be presented in 12-hour or 24-hour format.
• Give precision to the nearest second, tenth of a second, hundredth of a

second, millisecond, etc.
An appropriate combination of the above. Indicate if this is a timestamp (the
moment the event occurred, as measured by the system clock).

• Give precision to the nearest second, tenth of a second, hundredth of a
second, millisecond, etc.

• Give the range of values: 1 < interval < 120 days, 1ms < interval < 1000ms.

If a date/time attribute reflects a system event, like the date and time when a
field is updated, you probably don't need to specify it in detail.

2.5.5 Money

Money is fairly simple to specify. You need to indicate the currency."̂ ^
You need to give the precision, as long as it agrees with the currency. (U. S.
dollars may be presented as whole dollars or as dollars and cents, but yen are
always yen.) You can give a format mask or examples. And you need to give
the range of values or the maximum amount that will be stored in an
instance. If an amount can be negative, you need to document that, too.

47 YYYY denotes the year, MM the month, and DD the day.

^^ If possible, use the ISO 4217 currency code: http://www.xe.com/iso4217.htm.

DEFINING ATTRIBUTES 123

2.5.6 Other domains

Most DBMS (database management system) engines define specialized
domains that are of interest primarily to programmers and database people,
and some such programs permit user-defined domains. None of these is your
problem. But if you use artificial keys, you may use a "system controlled"
domain provided by the DBMS. Such a domain may be either sequential—
the next integer in a sequence that began when the first instance (record) was
added—or a random or sequential, but unique, sequence of numerals and/or
characters.

2.6 Related planning statement

As part of your description, you may need to identify one or more
specific planning statements that justify including the attribute in your data
model. At the very least, such statements can be used with an enterprise
modeling tool like Visible Advantage to provide traceability. For example,
in this Statement-Attribute matrix generated by Visible Advantage, business
statements are listed in the leftmost column, attributes serve as column
headings across the top, and a checkmark at an intersection indicates a
relationship:

Data Objects

Statements
ARTIST ALPHABETICAL LISTING (Business
Rule)
ARTIST DATE STRUCTURE (Business Rule)

ARTIST IDENTIFICATION (Business Rule)

ARTIST RELATED TO ARTIST (Business Rule)

ARTIST RELATED TO ARTWORK (Business
Rule)
ARTIST RELATED TO COMMENT (Business
Rule)
ARTIST TIMELINE (Business Rule)

03
O
O
CD
0)
CO

o'
13
C

3
C7
CD

05

a-
CO*

< •
CD

CD
0}

V

V

a.
co'

0)
• o
zy
0) a-
Q

N'
CD

V

a.
co'

Q .
CO
CD

V

0)
a.
co'

Q.
CD
CO
O

• 6 '
o

05
a.
co"

05

3
CD

V

05
a-
co'

C

3
CD

124 Chapter 7

2.7 Other items

Some software engineering tools let you specify abbreviations and/or
acronyms. These are usually of concern during implementation, not during
development of the logical data model. If you do use an abbreviation or
acronym to construct an entity or attribute name, document it.

Integrity constraints'*^ are limitations on the value of an attribute in
relation to other values of that attribute in other instances. There are two
kinds: (1) unique and (2) optional.

"Unique" means that no two instances within an entity may have the
same value for the specified attribute at the same time. Primary keys are
unique by definition, but other attributes may also have this quality. These
attributes are often identified as candidate keys—attributes that, singly or in
combination, could be used as primary keys.

"Optional" means that an instance may have no value—i. e., a null
value—for the attribute in question. This is the same as "Add later": if you
don't add the value now, it remains null until you add it—which may be
never. A note of warning, however: "optional" often indicates that you need
to look for secondary entities. If you don't do the work now, you may have
to do it when you get to normalization.

Conversely, if an attribute is not optional, it must have a value for every
instance within the entity. Different instances may have the same value for
that attribute, or they may all have unique values. "Not optional" (also
known as "not null") equates to the edit rule "Add now."

Keep your eye on optional attributes. We'll consider them again when we
discuss normahzation.

Some development or modeling methodologies require you to identify a
data custodian and/or data steward for each entity and attribute.
Definitions vary, but generally the data custodian makes policy for business
information, including security and backup/storage. The data steward makes
technical and operational decisions regarding storage, retrieval, processing,
and data integrity. In a less formal setting, you may want to record the name

^^ Not the same thing as referential integrity.

DEFINING ATTRIBUTES 125

or title of the person in the functional area who is responsible for the
accuracy of the information.

3. NEW NOTIONS

atomic attribute, alias, selection attribute, group attribute, repeating group
attribute, derived attribute, non-key attribute, edit rule, domain, binary
object, edit mask, system-controlled, integrity constraint, candidate key,
unique, optional, data custodian, data steward

4. EXERCISE: DOCUMENT YOUR ENTITIES AND
ATTRIBUTES

Many shops don't bother to keep track of entities and attributes at this
level, at least not manually. Such documentation is more easily done in an
enterprise modeling tool. Nonetheless, these forms are useful as checklists.
Adapt them as needed.

ENTITY NAME:
Description:

Flavor (circle 1) P / S / I / T / R / U
Primary kev#
Foreign_key# Originating entity:
Foreign_key# Originating entity:
Foreign_key# Originating entity:
Other attributes:
Abbreviations/Acronyms:

Associated entities:
Planning statement(s):
Data Custodian/Steward:

126 Chapter 7

1 ATTRIBUTE NAME: 1
Description: 1

1 Resides in (entity name): |

Kind (circle 1 and complete associated documentation) |
Primary kev#

1 Foreign_key#

Foreign_key#

Originating?
Y / N

Part of primary key?
Y / N
Part of primary key?
Y / N

Components (if foreign key, document
below):

Originating entities:

Originating entities:

Alias:

Alias:

1 [Selection_attribute] |
1 (Group_attribute)

((Repeating_group_attribute))

Formula:

Components:

Minimum
occurrences:

Related attributes:

Maximum
occurrences:

Conditions:

1 Non-key_attribute |
1 Unique/candidate key? Y / N |
1 Edit rule (circle 1 in each
1 column)

Add now (="not null")
/
Add later (="optionar')

Modify later
/
Can't modify later |

1 Domain (circle 1 and complete associated documentation) |
1 Character

1 Number

Language(s):

Base:

Binary

1 Date/Time/
Interval (circle)

1 Money

Fixed length /
Variable length
Dec / FP / Int
If decimal, give no.
of places:

File type(s):

Calendar:

Currency:

Can be neg?
Y / N

Other

Range / max length:

Range / max length:

Max file size:

Edit mask / example:

Edit mask /
Example:

Autonumber /
Sys gen id

Precision (time):

Range (interval):

Precision:

Range / max length: 1

1 Abbreviations/Acronyms: |
1 Planning statement(s): |
1 Data Custodian/Steward: 1

Chapter 8

THE ART GALLERY WEB (CONTINUED)
Wherein Dr. Pangloss poses as a software engineer

"The next step [said Dr. Pangloss] was to load all my knowledge about
the art gallery web into Visible Advantage and see what would happen."

17. Create planning statements in Visible Advantage

"After creating an encyclopedia (repository) for the project, I began
entering planning statements—specifically, the business rules I'd identified.
This gave me a chance to apply my improved understanding of the facts and
to express them in more precise language than I had originally used. I recast
certain planning statements (those for which a Standard Form exists) as
explicit Business Statements, capitalizing nouns. Here's a sample:

Statement: ARTIST RELATED TO ARTIST

Text: Each ARTIST may collaborate with zero, one, or many other ARTISTs. One or

more unnamed artists may be identified as the "follower(s)" of or as belonging to the "school"

of or as comprising the "workshop" of a named artist.

Statement: ARTWORK RELATED TO ARTWORK

Text: Each ARTWORK may be part of another ARTWORK, either as a detail view or as

a component.

Statement: ARTIST RELATED TO COMMENT

Text: Each ARTIST may be the subject of zero, one, or many COMMENTS. Each

COMMENT may describe zero, one, or many ARTISTs.

128 Chapters

Statement: COMMENT RELATED TO REFERENCE

Text: Each COMMENT has zero, one, or many CITATIONS. A comment that has no

citation is assumed to originate with the owner of the art gallery web. A citation comprises a

link to a reference work and, optionally, a page reference. The page reference may be one or

more page numbers or ranges of page numbers. It may include a volume number or part and

section numbers. It may include suffixes Hke "n" (footnote), "ff' (following), passim, or "n.

r '(note 1).

Statement: MAGE IDENTIFICATION

Text: Each IMAGE is identified by its FILENAME. It may be described in terms of

focus ("detail"), relative size ("thumbnail"), and visual quality. It may also have a copyright

holder and an accession number in the copyright holder's inventory system.

Statement: IMAGE RELATED TO IMAGE QUALITY

Text: Each IMAGE may have zero, one, or many COMMENTS regarding image quality.

These comments are often the same for a number of images. Each COMMENT may describe

zero, one, or many IMAGEs. These comments never have a cited source. They may include

the URL of an image collection on the World Wide Web.

Statement: LOCATION IDENTIFICATION

Text: Each LOCATION is identified by name, city, and country. It may also be

identified by its inclusion in another location. Each LOCATION may have zero, one, or

many WEBSITEs (URLs).

Statement: LOCATION RELATED TO LOCATION

Text: Each LOCATION may be part of another LOCATION, either physically (Chapel

of Eleanora di Toledo, Palazzo Vecchio) or conceptually (Paul Mellon Collection, National

Gallery of Art, Washington).

Statement: REFERENCE IDENTIFICATION

Text: Each REFERENCE is identified by the last name of its author or major authors, its

date of publication, and an optional sequence letter (a, b, c).

Statement: REFERENCE RELATED TO COMMENT

Text: Each REFERENCE may provide zero, one, or many COMMENTS.

"At this point, I added ARTIST RELATED TO COMMENT and
IMAGE RELATED TO IMAGE QUALITY. I'd realized that I had included
some comments about artists, and they should be accommodated. Also, I
decided to create an entity called IMAGE QUALITY to handle the
comments I sometimes have to make about faded slides. I considered linking

THE ART GALLERY WEB (CONTINUED) 129

IMAGE to COMMENT. But COMMENT is used to store text that is seldom
reused, whereas comments on image quahty are often repeated from image
to image.

"In inputting the planning statements, I separated Business Statements
(rules relating entities) from rules describing attributes .̂ ^ I avoided writing
business rules in terms of many-to-many associations. I'd already done the
work to reduce those to one-to-many associations, and I saw no point in
going backward. I tried to name the statements carefully, and I went to the
trouble of editing the names for consistency.

"I printed out the Statement report and matched the rules against my
updated Entity-Entity Matrix. As a result, I found seven or eight rules that
I'd omitted. Most of them stated associations from 'the other direction'—
from the point of view of the second of two associated entities.

18, Add entities and attributes in Visible Advantage

"I did the easy stuff first. Referring to the Statement report, I entered the
five principal entities (ARTIST, ARTWORK, IMAGE, LOCATION, and
REFERENCE) and the one intersecting entity (COMMENT). Then I went
back and entered all the attributes that were simple to define, checking them
off the report as I went.

"As I reviewed my notes, I edited the planning statements to describe
attributes that I'd overlooked. Then I added the attributes to the entities. I did
all this without, at this point, defining a link in VA between specific
planning statements and specific entities or attributes.

"For ARTIST, ARTWORK, LOCATION, and IMAGE QUALITY, I
defined a system controlled primary key. For IMAGE, the primary key is the
name of the image file. I gave REFERENCE a good deal of thought and
decided to do a little library research on the current preferred documentation
style in art history.

19. Linking attributes to planning statements in Visible Advantage

"I wasn't yet ready to create associations and meta-entities, so I just
linked planning statements to attributes for the entities I'd already input.
After printing out the Statement-Data Matrix, I identified attributes that were

^ Dr. Pangloss was using the Educational Edition of Visible Advantage, which has limits on
the number of planning statements that can be defined.

130 Chapter 8

not linked. A few were functional, so I went back and added planning
statements, then linked them to the attributes. I decided that system
controlled IDs didn't require planning statements.

"My biggest concern was the attributes that I hadn't yet defined—things
like artist date, artwork date, the minor artwork descriptors, and the
attributes of REFERENCE. I'd set them aside for the moment, and I just
didn't want to forget them.

20. Defining associations in Visible Advantage

"Before defining associations in VA, I revised the data map to be as up-
to-date and explicit as possible:

IMAGE QUALITY

_ZL.

COMMENT ^ O H —

IMAGE
STRUCTURE ê- H

LOCATION
STRUCTURE ^G- h4 +-N

A
ARTWORK

ARTIST

ARTWORK
STRUCTURE

"Then I started entering the associations in VA. Of the entities I'd
already entered, all but one was a principal entity. So I defined all the PP
associations first, starting each time with the parent entity. Then I defined
the meta-entities and their associations. I added key and non-key attributes
and corrected the errors exposed by the Model Analysis report.

Solving a problem

"When I got to these associations—

THE ART GALLERY WEB (CONTINUED) 131

JL

KHH

—I ran into a problem. I'd defined COMMENT in VA as an intersecting
entity, so VA wanted an identifying association between ARTWORK and
COMMENT. I had my doubts. On the other hand, I liked the idea of an
identifying association between REFERENCE and COMMENT, because I
wanted to use a short-form citation as REFERENCE'S primary key.

"Thus, a dilemma. It's not good practice to go 'identifying' with the one
parent and 'non-identifying' with the other. At first, I thought I'd go 'non-
identifying' with both: create a system controlled ID for COMMENT, and
bring in the parents' primary keys as foreign keys.

"Then I changed my mind. Instead of giving COMMENT a system
controlled ID, I'd give REFERENCE one. The website's application
program—whatever it might be—could grab the short-form citation from
REFERENCE based on the information in COMMENT. In other words, it's
a display issue, not a database issue.

"Just about this time, I realized that COMMENT isn't an intersecting
entity, but a principal entity, with a three-part compound primary key:
artwork no#, artist no#, reference no#. This got me to thinking:

1. "Can either artwork no# or artist no# be left blank? Generally, we
want to comment about an artwork or an artist, but not about both.

2. "What if the same text is relevant to more than one artist? Or more
than one artwork? I don't want to be repeating long passages of text in
the database.

"So I experimented. Perhaps COMMENT could be a parent to both
ARTIST and ARTWORK. The associations would be non-identifying.
COMMENT'S primary key would copy down to each of the other two
entities. The changed part of the map looked like this.

132 Chapter 8

JL

2.

Ho<

I made these changes in VA and ran the Model Analysis report to verify
that everything was okay.

"These weren't the only questions I came up with, and it wasn't the end
of my revisions to the data map. Every time I made a change, I ran the
Model Analysis report, and that helped me stay on course."

[And here we leave Dr. Pangloss. When he finally decides to migrate the
web to the Internet, he'll follow the guidelines in Chapter 12y below: run a
final thorough check of the logical data model then work on developing th'e
physical database. And he'll start developing the applications that will draw
on that database to generate pages for the Art Gallery website.]

Chapter 9

VERIFYING THE DATA MODEL
Wherein we get it right

We're closing in on the Holy Grail: normalization and the end of things
as we know them. But first you need to make one last check of the data
model. We'll assume that

• All associations are one-to-one or one-to-many.
• All associations are vaUd.
• All primary and foreign keys have been determined for all entities.
• As many attributes as possible have been identified, documented,

and assigned to the appropriate entities.

That done, you're in a good position to search for problem patterns:

• entity cycles
• triads
• multiple associations
• parallel intersecting entities
• one-to-one associations.

ENTITY CYCLES

You know what an entity cycle is:

• You can't get the job unless you have the experience. You can't get
the experience unless you get the job.

• Your phone bill is out of order. You call the phone company and get
the touch-tone menu. You press the right button, which gives you

134 Chapter 9

another menu. You press the right button, which gives you another
menu. You press the right button, and you're back at the original
menu.

In sum, an entity cycle works like this: entity A depends on entity B, which
depends on entity C, which depends on entity A. Add entities at your leisure:
you always end up going in circles. In data modeling terms, no entity in an
entity cycle is purely a parent entity, and all entities in an entity cycle are
child entities.

1.1 Discovering entity cycles

The process for discovering entity cycles is direct and systematic. You
start with a parent entity: an entity that is at the strong mandatory "one" end
of an association. Then you follow the trail of associations, parent to child,
parent to child, until—if you have an entity cycle—you end up where you
started.

If you like a more formal set of instructions, here they are. Looking at
your data map,

1. Identify groups of entities (a minimum of three per group) that are
connected one to another.

2. Within each group, identify all possible closed paths (circles).
3. For each circle,

a) Find a strong mandatory "one" (SMI) on one entity, and mark it as
your starting point.

b) Follow that association to the next entity.
c) Find a SMI on that entity, and mark it. OR If you find no SMI,

proceed to step 3e below.
d) Repeat from step 3b until you arrive at the entity where you started.

Congratulations! You have identified an entity cycle. Mark it for
later study.

e) Repeat process (step 3) with the next circle.
4. Repeat process (from step 2) for the next group (to end).

And if you hke to work from diagrams and examples:

VERIFYING THE DATA MODEL 135

Here's a group of associated entities. You can break this group down into
three circles:

• The outer circle, ABCED (= ADECB, DECBA, ECBAD, CBADE)
• The left-hand circle, ABED (= ADEB, BED A, DEB A)
• The right-hand circle, BEC (= ECB, CBE).

Let's start with the outer circle, ABCED: A is parent to B, but B is not
parent to C. The circle fails at entity B: no entity cycle. If you start at any
other entity in the circle, you'll eventually end up stymied at entity B,
without having found any entity cycles.

Now the left-hand circle, ABED: A is parent to B, B is parent to E, but E
isn't parent to D. No entity cycle, no problem.

Finally, let's look at the right-hand circle, BEC: B is parent to E, E is
parent to C, and C is parent to B. We have an entity cycle here.

So what's the problem? Well, an instance of E will be drawing on
information contained in an instance of B (as indicated by the foreign key
copied down from B). An instance of C will draw on information contained
in that instance of E. And an instance of B will draw on information
contained in that instance of C. Sure, this last instance of B may not be the
same as the one E drew on. But HOW DO YOU KNOW? If you don't have
a circle, you have a spiral of undetermined length. How will you process
information like that? What we've got, folks, is an unimplementable mess.

1.2 Correcting entity cycles

As you should have realized by now, entity cycles are bad. They indicate

• An error in your data map OR
• Incomplete analysis OR
• A problem with your company's business processes.

Fortunately, the solutions are simple:

136 Chapter 9

• Correct the error. Often the problem is that the cardinaUty is
reversed: one-to-many when it should have been many-to-one. OR

• Go back and talk to the subject matter experts, rethink that portion
of the data map, and make the necessary changes. OR

• Talk to the owners of the business processes and negotiate changes
that will get rid of the entity cycle without creating new problems.

Often, you will find that you simply need to add an additional entity. See?
We said it was simple.

2. TRIADS

Now you're going to concentrate on groups of three entities connected in
a circle. You've already weeded out the entity cycles among them. The ones
that are left are called triads. A triad consists of exactly three entities having
more than one path of associations between the highest level parent entity
and the lowest level child entity. The usual solution to a triad is to remove
the shorter path between the highest level parent entity and the lowest level
child entity. For example, if

A —< B, B —< C, and A —< C,

then simply removing A —< C usually solves the problem. But as we will
show, this solution does not work every time.

Here are eleven combinations of entity flavors that could qualify as
triads:

• PIP, PPP, PPS, PSS, PII. See below.
• PPR. Of course, this case would never occur. A role entity can't be

associated with more than one principal entity.
• PPT. This too would never occur. A type entity can't be associated

with more than one principal entity.
• PPU. Nor can a structure entity be associated with more than one

principal entity.
• PSU. The SU association isn't even a good idea in the first place.

That aside, a secondary entity is a subset of a principal entity, so the
triad boils down to PPU (invalid).

• PRT. This pattern would never occur. If we've got the role entity
sitting between principal and type entities, we've got no reason to
Unk T to P directly.

VERIFYING THE DATA MODEL 137

• PTU. This pattern would never occur. Where the U entity needs to
include the value of P's key (for both the parent instance of P and
the child instance of P), make the association from T to P
identifying. The value of T's key will copy from T to P, and from P
to U. It will also copy from P to all S entities.

That leaves five triads that are eager to give you problems. Let's look at
each in turn.

2.1 PIP

This is the easy one. The intersecting entity exists to resolve a many-to-
many association between the two principal entities. So why do we need the
one-to-many association from PI to P2?

This triad probably came from where most triads come from: two or
more Business Statements, usually from different areas of the enterprise,
have been mapped concurrently. For example:

1. Each TEACHER (PI) has one or more COURSES (P2).
2. Each COURSE (P2) has one or more TEACHERs (PI).
3. Each TEACHER (PI) may attend zero, one, or many COURSEs (P2).

The first two statements are from a staffing point of view; they establish
a many-to-many association between the principal entities TEACHER and
COURSE, and this many-to-many association is resolved by creating the
intersecting entity. The third statement is from a "client" point of view. It
establishes a one-to-(optional)-many association between the same two
entities.

The resulting triad can't be resolved in isolation. We're going to have to
look at attendance policies, employee classifications, employee benefits, and
employee training requirements. Most likely, teachers aren't the only staff
who may attend courses, and their attendance probably has nothing to do
with which teachers teach which courses. One solution might be to add an

138 Chapter 9

attribute to the I entity describing the nature of the association, such as
"teaches" or "takes" (a course).

2.2 PPP

This triad generally reflects the concurrent mapping
Statements at two different levels of detail. For example:

of Business

1. Each DEPARTMENT (PI) markets one or many PRODUCT LINEs
(P2).

2. Each PRODUCT LINE (P2) has one or many PRODUCTS (P3).
3. Each DEPARTMENT (PI) sells one or many PRODUCTS (P3).

The third Business Statement either gets to the point more quickly (maybe
product_line is an attribute of PRODUCT) or bypasses a significant area of
information. Perhaps product lines should be conceived as categories of
PRODUCT. As with the PIP example, we need to think more deeply and
gather more information. One solution might use three separate P entities for
PRODUCT, PRODUCT LINE, and DEPARTMENT, with an I entity
copying down a three part primary key for each valid combination.

2.3 PPS

In the PPS triad, two principal entities are associated with each other, and
each is associated with a secondary entity. If that secondary entity is a
subtype (a subset) of yet a third principal entity, well, the situation is
functionally the same as with the PPP triad, so we can treat it as a PPP triad.
If, on the other hand, S is a subtype of one of our two principal entities, then
there are three cases, as follows:

VERIFYING THE DATA MODEL 139

2.3.1 Case 1 (Many-to-Many)

P1

h
s

1
1

^
X

^
^

P9

Here, PI has a subtype; it has a one-to-many association with another
principal entity, P2; and P2 has its own one-to-many association with the
subtype. But S is a subset of PI. Therefore, we have the actual relationship
between PI and P2 is many-to-many. The obvious solution, then, is to ditch
the association between S and P2 and create an intersecting entity between
PI and P2, like so:

P1

S
< > •

P2

It may not be quite so simple, however. For example:

1. Each PERSON (PI) may be zero or one PILGRIM (S).
2. Each PERSON (PI) may have zero, one, or many BOTTLEs of water

(P2).
3. Each BOTTLE of water (P2) may serve one or many PILGRIMs (PI).

The first of these Business Statements defines the association between PI
and S. The second defines the association between PI and P2, and the third
the association between P2 and S.

Notice, however, that the relationships in Business Statements 2 and 3
are different. Statement 2 is about possession or ownership. Statement 3 is
about consumption. Furthermore, while the owner of a bottle of water may
or may not be a pilgrim, the consumer is always a pilgrim. What we've got,
then, is not just types (pilgrim or non-pilgrim) but roles (owner, consumer),
and that fact has to be built into our data map. Again, one solution might be

140 Chapter 9

to add an attribute to the I entity describing the nature of the association,
such as "owns" or "takes a drink from."

2.3.2 Case 2 (Many-to-One)

PI ^ h P2

£L

b-

Again, PI has a subtype, S. But its association with P2 is many-to-one.
P2 has a one-to-many association with S, as before. But that association is
covered in its association with PI. The association between P2 and S is
redundant and can be ditched.

For example:

1. Each EMPLOYEE (PI) may be zero or one WELLDIGGER (S).
2. Each WAREHOUSE (P2) issues tools to one or many EMPLOYEES

(PI).
3. Each WAREHOUSE (P2) issues tools to zero, one, or many

WELLDIGGERs (S).
A warehouse has to issue tools to at least one employee. That employee may
or may not be a welldigger. But any employee who is issued tools—
welldigger or not—will have that fact recorded in the EMPLOYEE table via
the foreign key copied down from WAREHOUSE.

2.3.3 Case 3 (One-to-Many)

P1 ^—4 P2

IT
n.

VERIFYING THE DATA MODEL 141

As before, PI has a subtype, S. But Pi 's association with P2 is one-to-
many, and so is S's association with P2. The latter association, between S
and P2, is redundant and can be ditched—unless, of course, the two
associations are reflecting different kinds of relationships. In that case, we
have to think again—as usual. Note that this is an exception to our rule that a
triad should be resolved by deleting the shorter association between the
highest level parent and the lowest level child.

2.4 PSS

With the PSS triad, we're confronted with three general cases:

1. Both secondary entities are subtypes of the principal entity.
2. Only one of the secondary entities is a subtype of the principal entity.
3. Neither secondary entity is a subtype of the principal entity.

Actually, if you map out this third case, you'll see that it's actually two
triads: one is our Case 1 or Case 2 (below), and the other is functionally
equivalent to a PPP triad. We'll leave it for you to play with.

2.4.1 Case 1 (Subtypes of the Same Principal Entity)

A
S1 ^-^

i
S2

Here, P has two subtypes, SI and S2. An instance of one SI has an
association with one or more instances of S2. If we look at the keys, we see
that each S receives a copy of P's primary key, but S2 receives two: one
copy from P (its primary key) and another copy from SI, as a foreign key.

The two keys in S2 should tell us that the real situation is recursion:
instances of P relate to other instances of P. So, in addition to the type entity
(not shown above), we're going to need a structure entity to sort things out.
We may also need a role entity.

142 Chapter 9

2.4.2 Case 2 (Subtypes of Different Principal Entities)

£.

i.
SI 4-

[

This diagram shows one of two versions of the case. Here, P and SI both
have a one-to-many association with S2. In the other version, these two
associations are reversed in direction: S2 has a one-to many association with
P and with SI. No matter: either way, the association between SI and S2 is
redundant and can be ditched. Another solution might be to associate P with
S2's parent and delete the associations shown here between P and S2 and SI
and S2. Once again, we have found an exception to the rule that a triad
should be resolved by deleting the shorter association between the highest
level parent and the lowest level child.

2.5 PII

The problem with this triad becomes apparent when we look at the key
situation. II has a compound primary key, and part of that key is the foreign
key inherited from P. 12 likewise has a compound primary key, with one part

VERIFYING THE DATA MODEL 143

inherited from P, the other from II. But because P's primary key is part of
Il 's primary key, 12 ends up with two identical copies of P's primary key in
its own primary key. But only one copy of P's primary key is necessary to
establish the uniqueness of 12's primary key.

The obvious solution is to ditch the association between P and 12. A
better solution is to think about how this triad came about in the first place.

MULTIPLE ASSOCIATIONS

Now that we've got all entity cycles and triads straightened out, we need
to look at associations between two entities. The basic rule is this:

• Two entities, one logical association: good.
• Two entities, more than one logical association: bad (mostly).

Let's look at some abstract patterns:

A

N /

1 >
1 \

B

A 1 <r^
1 V

B

L \ /

We've got a one-to-many
association between A and B.
And we've got a one-to-many
association between B and A.
Guess what? We've got a
many-to-many association
between A and B. And we
know how to resolve that:
create an intersecting entity.

B is receiving two copies of
A's primary key. Why? The
only way this pattern makes
sense is if B is a structure
entity.

Of course, you might find three or more associations between the same
two entities. But, however many associations there are, the reasons are the
same: you've probably got conflicting Business Statements—perhaps
subtypes that haven't been broken out into secondary entities. In theoretical
terms, you probably haven't normalized to Third normal form.

144 Chapter 9

4. PARALLEL INTERSECTING ENTITIES

Finally, let's look at this multiple association:

T
A

V
^Ohd^ ^

B

V
Well, this situation just shouldn't exist at all. We should have three

intersecting entities resolving these many-to-many associations.

Or should we? Fact is, each intersecting entity on your data map should
link a unique pair of principal entities.

Here's the situation in the abstract:

II has the same primary key as 12: pkl#, pk2#. Which entity do we go to to
get the data we want?

By now you know why problems hke this occur: you have multiple
Business Statements, representing partial or conflicting views of the business
situation.

Organizationally, the solution is the same as always: more analysis, more
talking with the subject matter experts, maybe some talks with management.
At the mapping level, the solution is usually quite simple: the parallel
intersecting entities all collapse into one entity.

VERIFYING THE DATA MODEL 145

Or so we like to think. Imagine, for example, that you and a colleague
have been working on the data model for Zachman Pie Company. You
yourself have been working with the Product Development team, and you've
come up with the following Business Statements:

1. Each PRODUCT has one or many INGREDIENTS.
2. Each INGREDIENT has zero, one, or many SUPPLIERS.
3. Each SUPPLIER suppUes zero, one, or many INGREDIENTS.

You've mapped these Business Statements this way:

PRODUCT ^ INGREDIENT L - | - Q ^ INGREDIENT
SUPPLIER

^ ^ ^ ^ - | — SUPPLIER

Since INGREDIENT and SUPPLIER have a many-to-many association,
you've created the intersecting entity INGREDIENT SUPPLIER.

In comes your colleague. She's been talking to the folks in Purchasing,
and she's come up with this mapping:

PRODUCT +-o^ PRODUCT
SUPPLIER >CH- SUPPLIER

This seems quite reasonable, and she's got the Business Statements to
prove it:

1. Each PRODUCT has zero, one, or many SUPPLIERS.
2. Each SUPPLIER suppUes zero, one, or many PRODUCTS.

Nonetheless, it bothers you. And when you put the maps together, you
like it even less:̂ ^

^^ This is not properly a diagram of parallel intersecting entities. Reality is sometimes messy.

146 Chapter 9

| - ^ INGREDIENT h+O^ INGREDIENT
SUPPLIER K>

PRODUCT SUPPLIER

o^ PRODUCT
SUPPLIER N>

But your colleague takes one look and comes up with an answer:
INGREDIENT is just a subcategory of PRODUCT. Her product list proves
it: flour, sugar, sodium citrate, cardboard boxes, etc. Her revised data map
looks like this:

PRODUCT f-O^ PRODUCT
SUPPLIER H> SUPPLIER

n.
INGREDIENT

INGREDIENT SUPPLIER has disappeared from the map: it's been
collapsed into PRODUCT SUPPLIER. No parallel intersecting entities, no
triads: everything's in good form.

You don't buy it. Your product list includes pies, turnovers, and tarts.
Ingredients aren't a subcategory. They're, well, ingredients. Besides, those
pies, turnovers, and tarts come from Zachman, not from Pillsbury or
International Paper.

Conclusion: PRODUCT means different things in different departments.
To Product Development, it's what they develop for the company to
manufacture. To Purchasing, it's what somebody else makes and the
company buys. You're going to have to do a bit of work to come up with
terms that both departments will accept, but once that's done, the map can be
redrawn properly.

VERIFYING THE DATA MODEL 147

5. ONE-TO-ONE ASSOCIATIONS

A scan of the Valid Associations Summaries (Chapter 5, sees. 4.14-4.15)
tells us that there are only three valid one-to-one associations:

• Dynamic P -|—o- dynamic P
• Dynamic P -|—o|- dynamic P
• Dynamic P -|—o- S

We know this last one. It's the association between a supertype and one of
its subtypes. We can set it aside. But the two P-to-P associations deserve a
look.

Generally, if you've got a one-to-one association, you should be
wondering why. Why isn't the child entity part of the parent entity? Why
haven't the child's attributes been absorbed into the parent?

Often such situations arise from different modeling sessions or different
business areas. Working with one group of subject matter experts, you
created one entity. Working with another, you created another. The
relationship is simple, but the information hasn't been integrated.

Note, however, that those two valid PP associations are one-to-optional-
one. That means that for some instances of the parent entity there are no
corresponding instances of the child entity. And that brings up an interesting
situation.

For illustration's sake, let's define a couple of entities in a P -|—o- P
association:

Entity
COMIC CHARACTER
NATURE

Relationship
parent
child

Instances
Tom, Jerry
cat, dog

Attributes
Does it really matter?
hair, tail

In other words,

1. Each COMIC CHARACTER has zero or one NATURE.
2. Tom and Jerry are instances of COMIC CHARACTER.
3. Cat and dog are instances of NATURE.

Now, let's say that

• Tom is associated with cat.
• Jerry has no association. (After all, association is optional.)

If we combine COMIC and NATURE so that all the attributes of
NATURE become attributes of COMIC, then Tom has values for the

148 Chapter 9

attributes that had been associated with the instance cat: hair=gray, tail=yos.
But Jerry has nulls for the attributes hair and tail.

That is to say, the attributes hair and tail art optional, and we've already
noted that, with respect to attributes, optionality ("Add later") is at least a
yellow flag. So a P-to-optional-P association may be a signal to look for
secondary entities or, more generally, to look further into the business
reality. If the association is truly optional-becoming-mandatory, the presence
of nulls is probably no problem. But if not, you may be combining entities
only to have to break them up again during normalization.

And then there are times when you may want to maintain two entities as
a look-ahead to physical data modeling. Consider a distributed database:
different tables (bodies of information) on different servers. You might want
to store the basic data—say, binary objects like picture files—in a table
residing on a server that has been optimized for large files like that. Then
you could set up an index on another server.

For example, a Human Resources database might put employee pictures
on a special server. The table there would handle just two datatypes: the one
used by the picture files (binary large object - BLOB) and the one for the
primary key (character, autonumber, or the like). The main server would
have all the tables needed to handle HR information, including at least one
table relating emplovee id# to selection attributes (indexes) and the foreign
key copied down to the picture table. That foreign key gives access to the
employee's picture.

6. NEW NOTIONS

entity cycle, triad, multiple associations, parallel intersecting entities

Chapter 10

VALIDATING THE DATA MODEL
Wherein we prove our worth

You've arrived! This is where we discuss normalization.

We can look at normalization from at least three related points of view:

• As a set of rules that inform your data modehng decisions
throughout your work.

• As a vaUdation process: matching the product against standards.
When it comes to data modeling, the basic standards are called the
normal forms.

• As a process of progressive correction: bringing the product into
conformity with each normal form in turn.

If you've done your modeling correctly and completely, with a good up
front understanding and awareness of normalization rules, your model
should be valid at least to Third normal form (3NF). Thus, normalization
should be validation: a matter of checking each entity against the criteria for
each normal form.

As correction, normalization is a painful process, but it may be necessary
if you're wrestling with an existing database—i.e., doing reverse
engineering. You examine a table, its columns, and its rows, testing your
findings against the standard (the normal form). As you find discrepancies,
you may define new columns or move existing columns to other tables,
creating them as necessary. Normalizing one table may entail creating or
changing other tables, which must be tested or even retested. When the
database passes the tests of one normal form, you start again, testing against
the next higher normal form.

150 Chapter 10

Obviously, validation is easier than correction. If you build your model
carefully and thoroughly, you'll be creating attributes, entities, and entity
structures that are akeady normalized, and this is a significant advantage to
building logical data models our way, with patterns (discussed in the next
chapter). When you validate them (the attributes, entities, and entity
structures), they'll pass without change, and everybody's happy.

1. DEPENDENCIES

Normalization applies to the attributes of an entity, not to its associations.
When we talk about the dependency of one attribute on another,̂ ^ we mean
that the value of one attribute is determined by the value of another: if you
know the one value, you know the other.

The most obvious example is the dependency of attributes on the entity's
primary key. Given 5 as the value of artist id#, you can know immediately
that the artist's name is Albrecht Altdorfer, that he was born circa 1480, and
that he died in 1538. Another value for artist id# gives particular values for
artist_name, artist_birth__date, and artist_death_date—values that may or
may not be the same as for Mr. Altdorfer, values that may even be null, but
values no less determinate for that. (Another way we talk about
dependencies is to say that one attribute determines the value of one or
more others: it is the determinant of the other attributes' values.)

What apphes to a simple primary key applies also to a compound
primary key. Take the role entity ORGANIZATION ROLE. We know that it
has the compound primary key org no#, org tvpe no#. Given values for
those two components of the key, we can find a particular value of the
attribute organization_role_start_date—say, "20010301" (March 1, 2001).

Note that we can't get that start date by knowing the value of org no# or
org tvpe no# alone. The attribute organization_role_start_date is dependent
on the whole key.

^' The following discussion is indebted to Rob and Semaan 2004: Chapter 2; and to
Reingruber and Gregory 1994: Chapter 8.

VALIDATING THE DATA MODEL 151

org no#

•

org type no# s t date

If, however, an attribute depends on only one of those component keys,
we say that it is partially functionally dependent. Imagine that we've given
the attribute organization_type_name to ORGANIZATION ROLE. If we
have a value for the entire compound primary key, we can find out the value
for organization_type__name. All well and good.

org no# o r g a n i z a t i o n type no#

•

s t d a t e

^ r

organ i z ation__type_jiaine

t
But look again: we can find that value if we have only the value of

organization tvpe no#. That's what we mean by partial functional
dependency: only part of the primary key determines the value of the other
attribute. (Yes, you're right: organization_type_name should be in the type
entity, not the role entity. That's the kind of error you catch when you
identify dependencies like this.)

Finally, there are cases where one or more attributes depend on another
attribute and the determinant is not all or even part of the entity's primary
key. We call that a transitive dependency.

Let's imagine that ORGANIZATION ROLE has another couple of
attributes: product__code and product_name:

org no# organizat ion type no#

> r >

product_cod.e

r

product_name

t
If we know product-code, we know product_name, and thus we have a
transitive dependency. Note that product_code could be a foreign key—^but
not part of the primary key—and wd'd still have a transitive dependency.

152 Chapter 10

2. REDUNDANCY

Data redundancy, as used here, has nothing to do with backups and data
security. Those kinds of redundancy are valuable. Data redundancy is a
problem.

Data redundancy exists when we have a particular value of an attribute
turning up many times. Each time an instance of the entity is created,
someone—often a human being—had to enter a value for that attribute. And
people make mistakes, noise creeps in, and things become messy.̂ ^

On the other hand, if that human being enters a value only once, well,
we're happy: the value may be right, or it may be wrong, but at least it's
stable. And if it's wrong, it only has to be corrected once, not hundreds or
even thousands of times.

It's pretty obvious that data redundancy is going to happen if we have
partial functional dependencies. To repeat, partial functional dependency
happens when an attribute is not dependent on all the parts of a compound
primary key. Let's look at a familiar example, ORGANIZATION ROLE:

org no#
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

org type no#
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

orgjtype name
vendor
customer
contractor
vendor
customer
contractor
vendor
customer
contractor
vendor
customer
contractor
vendor
customer
contractor

When we talk about different instances of an entity having "the same" value or a
"particular" value for an attribute, we're speaking in semantic terms. To a computer,
"Gauguin" and "Guaguin" are different strings, and that's all it knows. But in semantic
terms, one's the correct spelling of the artist's name, the other is a misspelling, and we
have redundant data.

VALIDATING THE DATA MODEL 153

org no#, org type no# is our compound primary key, and org_type_no#
determines org_type_name, so we have a partial functional dependency.

The maximum number of instances of ORGANIZATION ROLE is the
number of values of org no# (5) multiplied by the number of values of
org type no# (3).^ If we have three values of org type no#, we have three
values of org_type_name: that's our partial functional dependency at work.
We have five copies of that attribute pair repeated in the instances of
ORGANIZATION ROLE. And that, folks, is data redundancy.

In the case of transitive dependencies, the argument is more intuitive, but
the result is the same. We're going to recognize a transitive dependency only
if it happens a number of times, and if it happens a number of times, what
we've got is redundant data.

Let's look at a case of transitive dependency. We've got an old Artworks
database table that includes pretty much everything that can be said about a
work of art. Every time Giuseppe Arcimboldo's name appears in the
Artist_ID column, "15277-1593" appears in the Birth_Death column, and we
have half a dozen or more of his paintings listed in the table. That's a good
chunk of redundant data.

WorkJD
15
16
17
18
19
20
21
22
23

Title
Spring
Spring
Summer
Autumn
Winter
Fire
Water
Winter
Summer

ArtistJD
Giuseppe Arcimboldo
Giuseppe Arcimboldo
Giuseppe Arcimboldo
Giuseppe Arcimboldo
Giuseppe Arcimboldo
Giuseppe Arcimboldo
Giuseppe Arcimboldo
Giuseppe Arcimboldo
Giuseppe Arcimboldo

Birth_Death
15277-1593
15277-1593
15277-1593
15277-1593
15277-1593
15277-1593
15277-1593
15277-1593
15277-1593

Creation_Date

1573
1573
1573
1566
1566

1563

Note the problems:

• Each time one of Mr. Arcimboldo's paintings is added to the list,
someone has to spell "Arcimboldo." Or is it "Archimboldo"?
"Arcimboldi"? Actually, all three spellings appear in the art history
literature.

• If we don't standardize on one spelling—"Arcimboldo," for
instance—what happens when users start searching? For one thing.

With a compound primary key, each component has to have more than one possible value.

154 Chapter 10

they have to be good spellers: there's no nice drop-down selection
menu. Second, if they search for "Arcimboldo," they miss retrieving
the paintings by Mr. Archimboldo and Mr. Arcimboldi.

• One Mr. Arcimboldo has "15277-1593" for his birth and death dates.
Another might have "1527-1593," and another (a true artistic
prodigy) might have "15277-1539." It's that old gremlin, human
error, introducing even more variation into our table.

• As we start updating the table, correcting the errors and
standardizing our data, we end up doing a lot of data entry. There
are a lot of values to be changed, and with every change comes,
again, the possibility of error. And when the job's done, someone
comes along and adds another record: the more records, the more
errors, and the more consequences down the line.

• If this were a matter of partial functional dependency, with
Artist_ID as part of the primary key, we'd have still more problems.
After all, the primary key is marked, "Add now, cannot modify
later." We couldn't change "Archimboldo" to "Arcimboldo" at all:
we'd have to delete the entire row—all that beautiful data—and then
enter everything again.

What we're talking about is data anomalies:

• Errors that propagate as records are added are called insertion
anomalies.

• Errors that propagate as records are updated are called update
anomalies.

• Errors that propagate as records are deleted are called deletion
anomalies.

But not all data redundancy comes from partial or transitive
dependencies. Take a look at the Artworks database table from another view:

1 WorkJD
1

2

3

4

5

Title
Holy Trinity

Venus and Adonis

Hercules and the
Muses
Venus and Cupid

Bianca Cappello

Creation_Date
1555

Artist_ID
Alessandro
Allori
Alessandro
Allori
Alessandro
Allori
Alessandro
Allori
Alessandro
Allori

Museum_ID
SS Annunziata

Pitti Palace

Uffizi

Uffizi

Uffizi

VALIDATING THE DATA MODEL 155

WorkJD
6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

Title
Birth of Mary

Susanna in the
Bath
Battle of Issus

Danube
Landscape with
Castle Worth
Judith with the
Head of
Holofemes
Baby Jesus asleep
on the Cross
Annunciation
Coronation of the
Virgin
St Anthony Abbot

Spring

Spring

Summer

Autumn

Winter

Fire

Water

Creation_Date
ca. 1520

1526

1529

after 1520

ca. 1430

1573

1573

1573

1566

1566

ArtistJD
Albrecht
Altdorfer
Albrecht
Altdorfer
Albrecht
Altdorfer
Albrecht
Altdorfer

Cristofano
Allori

Cristofano
Allori
Fra Angelico
Fra Angelico

Fra Angelico

Giuseppe
Arcimboldo
Giuseppe
Arcimboldo
Giuseppe
Arcimboldo
Giuseppe
Arcimboldo
Giuseppe
Arcimboldo
Giuseppe
Arcimboldo
Giuseppe
Arcimboldo

Museum_ID
Alte Pinakothek

Alte Pinakothek

Alte Pinakothek

Alte Pinakothek

Pitti Palace

Pitti Palace

Prado
Uffizi

Museum of Fine Arts,
Houston
Academia de Bellas
Artes de San Fernando
Louvre 1

Louvre

Louvre

Louvre

Kunsthistorisches

Kunsthistorisches

Notice that, while each record is different, there are quite a few repeated
values:

• In the Title column, one value is repeated twice out of 21 instances.
• In the CreationJDate column, two values are repeated, (total: 5)
• In the ArtistJD column, five values are repeated, (total: 21)
• In the Museum_ID column, five values are repeated, (total: 17)

If we were looking at this table as an assemblage of character data, we
might be tempted to decide that we have some transitive dependencies:
Albrecht Altdorfer's paintings are in the Alte Pinakothek, while Cristofano
Allori's are in the Pitti Palace.

156 Chapter 10

But behind the table is the entity: behind the physical database is the
logical data model, and behind the model is business reality. If we ask a
subject matter expert about these "transitive dependencies," they dissolve:
What happens if we add a record for another of Mr. Altdorfer's paintings,
and (as is quite possible) it's in the Kunsthistorisches Museum in Vienna?
Nonetheless, we have data redundancy, and we need at least to reduce it to a
manageable minimum.

What isn't redundant data? Well, foreign keys exist in more than one
entity. In fact, during normalization (if not before), you are adding more
entities, increasing the number of copies of foreign keys across the database.
Difference is, the values of a foreign key are not normally entered
individually, from outside the database: the database application copies them
exactly from their origin, the originating primary key in the parent table. So
foreign keys are not redundant data in themselves, though a foreign key may
be the determinant in a partial functional or transitive dependency.

3. THE NORMAL FORMS

The database people have a venerable adage:

''The key, the whole key, and nothing but the key, so help me Codd. "̂ ^

The phrase is a reminder of the first three normal forms:

• "The key" = First normal form
• "The whole key" = Second normal form
• "Nothing but the key" = Third normal form.

Another of their crude mnemonic tricks is the acronym RPT:

R First normal form: No Repeating Groups
P Second normal form: No Partial Functional Dependencies
T Third normal form: No Transitive Dependencies.

As you read about the normal forms, you'll see how these phrases apply.

Edgar F. Codd first proposed the use of mathematical relations for managing data.

VALIDATING THE DATA MODEL 157

3.1 First normal form (INF)

The key'T'No repeating groups'

To satisfy the standard for First normal form, every entity in the data
model has to satisfy three criteria:

1. Integrity. The primary key has to be unique in the model: no other
entity (except secondary entities) may use the same attribute or set of
attributes as its primary key.

2. Dependency. All generic non-key attributes in the entity must depend
on the primary key. By "generic" we mean that the key is not a
selection attribute, a group attribute, or a repeating group attribute.

3. Single value. For every instance in the entity, the instance may have
one and only one value for each attribute.

Let's take a quick look at these criteria.

1. The integrity rule for primary keys is just a special case of the general
attribute uniqueness rule: a non-key attribute may exist in only one
entity in the logical data model.

2. A secondary entity's primary key is at the same time a foreign key,
and foreign keys are excluded from the attribute uniqueness rule. In
"business terms," a secondary entity is an extension of its parent
(supertype) entity. It provides information about a category (subset) of
instances in the parent entity. The parent entity does the real
accounting, while the secondary entity adds values for attributes that
are relevant only to that category of the parent.

3. The dependency rule essentially says that the primary key must be the
primary key: If we have a value for the primary key, we can find the
corresponding value for any other attribute in the entity. Note that the
dependency rule for First normal form does not rule out other,
coexisting dependencies: dependency on an alternate (candidate) key,
partial functional dependencies, or transitive dependencies. Just wait,
though ...

4. The single value rule comes from the limitations of relational
databases, which work with two-dimensional tables. If you think in
terms of a table, the single value rule says that each cell can contain
only one value.

Thus, there's one thing you need to do to bring an entity into conformity
with the INF standard. You will have to take any repeating group attributes
and create a new entity for each of them.

158 Chapter 10

Let's go back to an old example. Here's ARTWORK as a table:

artwork id#
1 1

2
3

artwork name
Terranuova Madonna
Baptism of Christ
Allegory of Time and Love

artwork_subject
Mary, Christ Child, saint, landscape
Christ, saint, angel, landscape
Venus, Cupid

As long as artwork-subject exists in its current form, ARTWORK is not in
First normal form. So what if we move artwork_subject into a new entity
called SUBJECT? As a table, our entity looks like this:

artwork_subiect_no#
1
2
3
4
5
6
7
B

artwork_subject
Mary
Christ Child
saint
landscape
Christ
angel
Venus
Cupid

Now we can check our entities against our Business Statements:

"Each ARTWORK may have zero, one, or many SUBJECTS.
"Each SUBJECT must apply to one or many ARTWORKS."

In other words, ARTWORK >|--o< SUBJECT.

Well, we know what to do about this situation:

ARTWORK -I—o< ARTWORK SUBJECT >h-h SUBJECT

We create an intersecting entity, ARTWORK SUBJECT, that's going to
look like this, tablewise:

artwork_id#
1
1
1
1
2
2
2
2
3
3

artwork, subject. no#
1
2
3
4
5
3
6
4
7
8

And so it goes: every time you come across a repeating group attribute,
you're going to have to break it out into another entity. And anytime you

VALIDATING THE DATA MODEL 159

make a change like this, you'll need to go back and find a Business
Statement that validates it. If one doesn't exist, talk to the subject matter
experts. They may confirm your decisions, or they may have information
pointing you toward a different solution.

3.2 Second normal form (2NF)

"The whole key'T'No partial functional dependencies"

The rules for Second normal form are few and sweet:

1. The entity must meet the standard of First normal form.
2. The entity must have no partial functional dependencies. In other

words, all dependencies on a compound primary key must be
dependencies on the whole key, not on any fraction of the key.

With a partial functional dependency, there are two possible cases, and
there's a pretty direct way of dealing with each.

Case 1: The determinant attribute in the partial functional dependency is
a foreign key. The usual solution is to move the dependent attribute out of
the current entity and into the parent entity of the foreign key.

We've seen this before, with ORGANIZATION ROLE:

org no# organization type no#

> r >

st__date

r

organi z a t i on_type_naine

t
The organization tvpe no# component has been copied down from the
ORGANIZATION TYPE entity. Since organization_type_name is
dependent on organization tvpe no#, it seems only reasonable to move
organization_type_name into the ORGANIZATION TYPE entity as well.

Of course, in another situation the foreign key might have been copied
down from a secondary entity. Thus, it may be two or three levels away from
the originating (principal) entity. Moving the dependent attribute up to the
immediate parent entity may make business sense, or it may not: our fallen
sparrow may have to fly up the inheritance tree branch by branch before it
finds a nest.

160 Chapter 10

Case 2: The determinant attribute is not a foreign key. For example,
MEDIA has a two-part primary key, and neither part exists elsewhere in the
data model:

filenanie#

•

MIME s- i ibtype# MIME__type

A

We have a partial functional dependency here: if we know the MIME
subtype (jpg, gif, etc.), we know the MIME type. And we know that getting
rid of the partial functional dependency means moving MIME_type
elsewhere. But where?

Simple solution: Create a new static principal entity called MIME. The
attribute MIME-subtype becomes MIME's primary key, and MIME_type
becomes a non-key attribute:

MIME STibtype# MIME t y p e

The next step: Connect MEDIA to MIME. The subject matter expert says
that

A media item may come in a variety of flavors—for example,
AG002.jpg, AG002.gif, even AG002.wav—but it must come in at
least one flavor.
Many media files have the same extension—AG002.jpg, AG003.jpg,
etc.—but each extension must be represented by at least one image
file.

VALIDATING THE DATA MODEL 161

This tells us that there's a mandatory-many-to-mandatory-many association
between MEDIA and MIME: MEDIA >|~-|< MIME. But when we set up
MIME as a table, we'll want to populate it at the outset with a number of
standard type/subtype pairs, so that they'll be there when we start adding
media file records to MEDIA. With a >|—1< association, data entry is not
possible: we are locked out. So we'll modify the association: make it
MEDIA >o—1< MIME. The association must be made optional (or optional
becoming mandatory) on at least one side to allow us to populate the tables.

Final step: Create an intersecting entity, MEDIA MIME. Thus we have

MEDIA -I—1< MEDIA MIME >o—|- MIME

MEDIA MIME has a compound primary key: filename#,
MIME subtype#. So if we want to find all the file flavors for a particular
filename, we just look in MEDIA MIME and find the corresponding
instances.

So, in sum, to resolve a partial functional dependency in Case 2, you

• Create a new entity.
• Move the partial functional dependency—determinant and

dependent attributes—into the new entity.
• Define the association between old entity and new, based on

business rules.
• Create meta-entities as necessary.

There's one last step: you need to test each changed entity against the
standard (INF and 2NF). It's not uncommon for a change to create new
problems or expose hidden business rules.

3.3 Third normal form (3NF)

"Nothing but the key'T'No transitive dependencies''

Here's the Third normal form standard:

1. The entity meets the Second normal form standard (which means it
automatically meets the First normal form standard as well).

2. The entity contains no transitive dependencies.

The usual solution for transitive dependencies is pretty much the same as
for partial functional dependencies. Case 2 in Section 3.2 (above): The
transitive dependency is spun off into a new entity, the primary key and

162 Chapter 10

remaining attributes stay with the original entity, and all associations have to
be reassessed.

Here's a simple example. The old, everything-but-the-kitchen-sink
artworks database has attributes like these:

• work no#
• title
• creation_date
• artist_name
• artist_pseudonym.

If we know artist_name, we know artist_pseudonym: Michelangelo
Merisi is always Caravaggio, and vice versa. So (assuming artist_name is
not a key) we have a transitive dependency.

>
work no#

r ir "f if

t i t l e creation date a r t i s t name artist_pseudonym

J
We resolve the dependency by creating a new entity, ARTIST. It will

have the attributes

• artist id# (Let's do this right: by creating a unique primary key, we
allow artist_name to be recycled with many different
artist_pseudonyms.)

• artist_name
• artist-pseudonym.

>

a r t i s t id#

r >

a r t i s t name

r

a r t i s t pseudonym

And, having created this new entity, we give it a little thought. While an
artist may have only one given name, he or she may have a number of
pseudonyms. So we need to break out another entity: ARTIST
PSEUDONYM. The association between ARTIST is one-to-many. (It seems
unlikely that two artists will have the same pseudonym. In that case, we'd
have a many-to-many association.)

So, from our old artworks database we come up with three tables.
ARTIST will look like this:

VALIDATING THE DATA MODEL 163

1
a r t i s t i d # a r t i s t ^ n a m e

ARTIST PSEUDONYM is the big winner. It gets a primary key,
artist pseudonym id#, and as a child entity it inherits a foreign key from
ARTIST:

a r t i s t pseudonym id#

1
a r t i s t id#

i
ar t i s t_jpseaidonym

That leaves the following attributes in the ARTWORK entity:

• work no#
• title
• creation_date.

Since each ARTIST makes one or many ARTWORKS, ARTWORK is also a
child entity and likewise inherits a foreign key from ARTIST:

work no#
i

a r t i s t _ i d #
i

t i t l e

4
c r e a t i o n j d a t e

The problem with the original transitive dependency was that every time
we added another painting by Caravaggio to our ARTWORK table, we'd
have to type out "Michelangelo Merisi" and "Caravaggio." Lots of chances
for error. Now that we've created ARTIST and ARTIST PSEUDONYM, we
type these names only once. Problem solved. (Hold on! you say. What if an
artwork is created by more than one artist? Well, change the problem,
change the solution.)

A final note

If, after everything else, you still have derived attributes, your entity isn't
in 3NF. After all, a derived attribute is dependent on at least one other
attribute.

• If the determinant attribute is part of the primary key, you've got a
partial functional dependency.

• If the determinant is a non-key attribute in the same entity, you've
got a transitive dependency.

164 Chapter 10

• And if the determinant is elsewhere, your derived attribute may be in
the wrong entity.

• Things get even more complicated if the derived attribute depends
on more than one other attribute.

Luckily, like foreign keys, derived attributes don't create data
redundancy problems. They are calculated by formula or by aggregation.
They are not input, they aren't used as primary keys, and thus they do not
create insertion, update, or deletion anomalies. So, if derived attributes are
the only reason your entities aren't in 3NF, this is nothing to worry about.

3,4 Boyce/Codd normal form, Fourth normal form, Fifth
normal form, and beyond

Usually, if you can get your model to 3NF, you're in good shape. Beyond
3NF, you encounter the higher normal forms. But you don't usually run into
situations where you need them, and we won't do more than just describe
them here.

Boyce/Codd normal form (BCNF) addresses some special cases of
partial functional or transitive dependencies. That's why it is often combined
with 2NF or 3NF, and entities that are in 3NF are almost always in BCNF as
well.

In brief, BCNF looks at cases where

1. There are two or more candidate keys.
2. The candidate keys are compound keys.
3. The candidate keys share at least one key attribute in common.

For example, AB#-^C,D and AC#->B,D, where A, B, C, and D are all the
attributes in our entity (and -> means "determines").

Fourth normal form (4NF) addresses cases of multivalued dependency
(MVD). These are situations in which A#->B and A#->C, where B and C
are repeating group attributes. Sometimes B-^C, and that's where the
problems arise. Generally, though, if an entity is INF, it is also 4NF.

Fifth normal form (5NF) addresses cases of join dependency (a situation
that may happen during earlier normalization processes):

• Starting with a single entity, we set out to resolve repeating group
attributes, partial functional dependencies, and/or transitive
dependencies, and we produce three or more new entities.

VALIDATING THE DATA MODEL 165

• If we then asscx:iate those entities with a new entity and, by proper
inheritance of keys, recreate the data of our original entity, no new
information—no new instances—may be created in the process.

In other words, the original is equal to the sum (join) of its parts. That's
5NF.

Other normal forms have been defined as well, including Domain Key
normal form, in which no anomalies exist.

4. NEW NOTIONS

dependency, determinant, partial functional dependency, transitive
dependency, data redundancy, data anomaly, insertion anomaly, update
anomaly, deletion anomaly. First normal form, Second normal form. Third
normal form, Boyce/Codd normal form. Fourth normal form. Fifth normal
form. Domain Key normal form, multivalued dependency, join dependency.

Chapter 11

DESIGN PATTERNS
Common shapes for common situations

The notion of design patterns has become commonplace in object
oriented software development, and a few data modelers have applied it to
their area of expertise. A design pattern is defined variously as

• "a set of rules describing how to accomplish certain tasks" (Pree and
Gamma 1995: 61)

• "a reusable implementation model or architecture that can be applied
to solve a particular recurring class of problem" (Alpert and Brown
1998: 2)

• a "structured, packaged problem solution in literary form," "a form
for documenting best practices," "a rule of thumb," "a template"—in
short, a way of "capturing and expressing the developer's tacit
knowledge" (Evitts 2000: 2, 16)

• a "description ... of communicating objects and classes that are
customized to solve a general design problem in a particular
context." (Gamma et aL 1995: 27)

The notion of design patterns derives from architecture. According to
Christopher Alexander, "Each pattern describes a problem which occurs
over and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice" (Alexander et
aL 1977: x).

Design patterns give names to practical knowledge; they define a high-
level vocabulary for understanding and solving business statements
graphically. Design patterns are presented in a standard format; they're like

168 Chapter 11

recipes in a cookbook or dress patterns in a catalog. Above all, they are
practical, first as instructional materials and then as development tools.

Below, we've defined eight data modeling design patterns. Each pattern
is presented in the following format:

•

• Name - Actually, an acronym
• Intent - The purpose of the pattern
• Structure - A diagram and explanation
• Discussion - Where the pattern applies, how it works, its

advantages, and any adaptations; with one or more analyzed
examples

• Collaboration - How the pattern combines with other patterns
Implementation - Variations, their advantages and disadvantages,
with examples

• Sample - An apphcation presented and discussed
• Closely Related Patterns - Itemized.

Sometimes, topics will be combined or omitted. Note, too, that for
clarification's sake we often talk about entities as if they were tables, even
though we're talking logical data modeling, not physical database design.

If you've mastered everything said in this book to this point, the data
modeling design patterns should be a good review and summary. In the field,
they should provide a shorthand for doing data modeling on the fly, in
meetings with executive management or subject matter experts. If you know
the patterns and the key structure for each pattern, you can save time, save
pain, and avoid mistakes.

1. NAME: P PATTERN 1

1.1 Intent

Represent a single principal entity; map one noun.

DESIGN PATTERNS

1.2 Structure

169

ARTWORK

1.3 Discussion, Collaboration, Implementation

P ("principal") is the simplest pattern and the first entity flavor laid down
for any larger pattern. It will have an originating unique primary key,
expressed in one or more columns. It will also have at least one non-key
attribute column. Otherwise, it's useless: a mere list of identifiers that don't
identify anything.

P comes in two versions:

• Dynamic P: instances are added, changed, or deleted frequently
• Static P: instances are seldom added, changed, or deleted.

P may constitute an entire database, with no associations or related
entities.

1.4 Sample

As an entire physical database unto itself, a single-table database,
ARTWORK might look like this:

artwork_id#
1

2

title
The Crowning
with Thorns
The Redeemer

artist
Anthony
van Dyck •
Titian

location
Madrid,
Prado
Florence,
Pitti Palace

comment
Composition based on a
prototype by Titian.
Painted for the Duke of
Urbino.

1.5 Closely Related Patterns

All other patterns: none of the other patterns can exist without a P entity.

170 Chapter 11

NAME: PP PATTERN 2

2.1 Intent

Associate two or more dynamic principal entities in one or more one-to-
many relationships; map two or more nouns

2.2 Structure

LOCATION
<

ARTWORK

2.3 Discussion, Collaboration

PP ("principal to principal") is the association of two or more P patterns.
Therefore, each entity follows the P rules: one originating unique primary
key of one or more columns, at least one non-key attribute column.

Note that one or more Ps are parent to one or more other Ps. Therefore,
the child Ps will have one or more foreign key columns. These columns will
receive the primary keys of the parent entity or entities. The parent P may be
either static or dynamic. The child P is almost always dynamic.

PP may constitute the entire physical database, or it may be part of a
larger pattern.

2.4 Implementation

AGENT < CLIENT < ACCOUNT

This is a simple PP pattern (or, if you prefer, a pair of PP patterns). Each
AGENT has one or many CLIENTS, and each CLIENT has one or many
ACCOUNTS. The agent's primary key value is copied down into a foreign
key column, into the appropriate cell in each instance representing a client
served by that agent. Likewise, the chent's primary key value will copy

DESIGN PATTERNS 171

down as a foreign key into the appropriate cell in every row of ACCOUNT
that represents an account owned by that client. If the AGENT-CLIENT
association is identifying, AGENT'S primary key will be copied down to
ACCOUNT.

Here's another implementation:

Here, the two PP patterns model two different relationships with
MUSEUM:

• Each MUSEUM holds one or many ARTWORKS.
• Each MUSEUM may have zero, one, or many SHOPs.

If the association between MUSEUM and ARTWORK is identifying,
MUSEUM'S primary key will copy down as part of ARTWORK's
compound primary key. That is as much as to say: "This work of art is
identified with this museum."

In the second association, SHOP may receive MUSEUM'S primary key
as a foreign key pure and simple (not as part of SHOP'S primary key) in a
non-identifying association. Consider that a shop may be part of a chain of
shops. Therefore, though a particular shop will be in one and only one
museum, shops in the chain may be in many. To look at the situation another
way, there may be a CHAIN entity that has a mandatory-one-to-optional-
many association with SHOP: a particular shop may or may not be part of a
chain. SHOP might in this case have a primary key column and two foreign
key columns, one receiving MUSEUM'S primary key, the other CHAIN'S
primary key.

2.5 Sample

Let's consider the PP pattern LOCATION-|—< ARTWORK.
LOCATION will probably have attributes like

172 Chapter 11

location id#
1
2

location_name
Prado
Pitti Palace

location_city
Madrid
Florence

location_country
Spain
Italy

ARTWORK will have attributes like these:

artwork id#
1

2

location_id#
1

2

title
The Crowning
with Thorns
The Redeemer

artist
Anthony
van Dyck
Titian

comment
Composition based on a
prototype by Titian.
Painted for the Duke of
Urbino.

The pattern's optionalities can be

• Mandatory: Every LOCATION is associated with one or many
ARTWORKS. OR

• Optional: Every LOCATION is associated with zero, one, or many
ARTWORKS. OR

• Optional-becoming-mandatory: Every LOCATION may currently
be associated with zero, one, or many ARTWORKS, but it will
eventually be associated with one or many ARTWORKS.

Optional or optional-becoming-mandatory is probably the most
convenient way to define the association for database purposes. It lets you
enter a number of locations at one sitting, then associate the artworks to
them at your leisure.

2.6 Closely Related Patterns

3. NAME: PIP PATTERN 3

3.1 Intent

Resolve a many-to-many association between two or more dynamic
principal entities.

DESIGN PATTERNS 173

3.2 Structure

ARTIST <
ARTWORK

ARTIST ^ ARTWORK

3.3 Discussion

With PIP ("principal-intersecting-principal"), the two or more dynamic
principal entities conform to the P pattern: each has one originating unique
primary key of one or more columns, and each has at least one non-key
attribute column. The PI associations may be mandatory, optional, or
optional-becoming-mandatory.

The PI associations are identifying. The intersecting entity receives a
copy of the complete primary key from each principal entity. These two or
more foreign keys are all (or part) of the intersecting entity's unique
compound primary key.

The intersecting entity may also have one or more non-key attributes.

3.4 Collaboration, Implementation

PIP may constitute the entire physical database, or it may be part of a
larger pattern. For example, one or all Ps might be mixed
secondary/principal entities. In other words, P might be a secondary entity—
a subset—of a principal entity while having secondary entities of its own, to
break down its own contents into subsets. The intersecting entity would
relate all the instances of P, and only those, to the instances of every other P
(which might in turn be a subset of yet another principal entity).

3.5 Sample

Let's consider this PIP:

ARTIST <
ARTWORK

ARTIST > •

ARTWORK

The reality is "An artist may create one or many artworks, and an
artwork may be created by one or many artists."

174 Chapter 11

The optionality of the associations may be

• Mandatory: Every ARTIST must relate to one or many
ARTWORKS, and vice versa. OR

• Optional: Every ARTIST may relate to zero, one, or many
ARTWORKS, and vice versa. OR

• Optional-becoming-mandatory: Every ARTIST will eventually
relate to one or many ARTWORKS, and vice versa.

As with PP, designating the optionality as optional or optional-becoming-
mandatory gives us more flexibility in populating the tables.

Typical attributes for the entities will look like this:

• ARTIST: artist id#, artist_name, etc.
• ARTWORK: artwork id#, artwork_name, artwork_date, etc.
• ARTWORK ARTIST: artwork id#, artist id#.

The primary keys are copied down from the principal entities and
become components of the intersecting entity's compound primary key.

Let's say, for example, that the ARTIST table looks like this—

artist id#
1
2

artist name
Anthony van Dyck
Frans Snyders

-and let's say that the ARTWORK table looks like this:

artwork id#
1
2

artwork name
Fish Market
Rest on the Flight to Egypt

ARTWORK ARTIST would look like this:

artwork id#
1
2
1

artist id#
1
1
2

That is to say, van Dyck painted Rest on the Flight to Egypt, and he and
Snyders collaborated on Fish Market,

Note that each pair of IDs (foreign keys) in ARTWORK ARTIST is
unique. It's got to be this way: the two foreign keys together constitute the
primary key, which must be unique. In situations where the two-part primary
key is not unique, an additional key column or columns may be added.

DESIGN PATTERNS 175

We could add one or more non-key attributes to ARTWORK ARTIST,
perhaps to characterize the relationship between the artist and the artwork.

3.6 Closely Related Patterns

None

4. NAME: PU PATTERN 4

4.1 Intent

Associate two instances of the same dynamic principal entity; model two
instances of the same noun in a one-to-one, one-to-many, or many-to-many
association.

4.2 Structure

ARTWORK ^
ARTWORK

STRUCTURE

4.3 Discussion

The structure entity resolves recursive relationships, where instances of
the dynamic principal entity have associations with each other. The P table
has the characteristics already defined: one originating unique primary key
of one or more columns and at least one non-key attribute column. Note that
P's primary key may itself be compound.

Each instance of U associates exactly two instances of P. Thus, the U
table will have two or more columns of foreign keys. It may also have a non-
key attribute column for naming or describing how the two instances of P
relate to each other.

176 Chapter 11

4.4 Collaboration, Implementation

PU may constitute the entire physical database, or it may be part of a
larger pattern. A PU database would have two tables, of course. P might look
like this:

artwork id#
1
2
3
4
5

artwork_name
Nicolaes van der Meer
Cornelia Vooght Claesdr.
Willem Coymans
Martin Luther
Katherine Bora

And U might look like this, with artwork id# (1) and artwork id# (2)
constituting the compound primary key:

artwork id#(l)
1
4

artwork id#(2)
2
5

artwork_relationship
pendant
pendant

In this small database, we have five instances of artworks. Four of them
are related to others as pendants (paintings created to be displayed as a pair).
Note that the "pendant" association is one-to-one-optional: an artwork may
have zero or one association, but no more than one.

But let's add some more instances:

artwork id#
1
2
3
4
5
6
7
8
9
10

artwork name
Nicolaes van der Meer
Cornelia Vooght Claesdr.
Willem Coymans
Martin Luther
Katherine Bora
The Gloomy Day
Hay Harvest
Corn Harvest
Return of the herd
Hunters in the Snow

artwork id#(l)
1
4
6
6
6
6
7

artwork id#(2)
2
5
7
8
9
10
8

artwork_relationship
pendant
pendant
The Seasons
The Seasons
The Seasons
The Seasons
The Seasons

DESIGN PATTERNS 111

artwork id#(l)
7
7
8
8
9

artwork id#(2)
9
10
9
10
10

artwork_relationship
The Seasons
The Seasons
The Seasons
The Seasons
The Seasons

The association between P and U in this case is one-to-optional-many:
each instance of P may have zero, one, or many associations with other
instances of P. The list of instances in U tells us that the portrait of Nicolaes
van der Meer is the pendant to the portrait of Cornelia Vooght Claesdr. The
portrait of Willem Coymans has no relationship with any other painting;
thus, its artwork id# does not appear in either of the foreign key columns in
U.

As for the five Bruegel paintings in P (artwork id# 6, 7, 8, 9, and 10), all
are part of a series depicting the seasons. To ensure that all five paintings are
properly associated, we need ten rows in the U table. You can test this by
verifying that every possible combination of two Bruegel paintings appears
only once in U: 6 and 7 {The Gloomy Day and Hay Harvest) appears once
and only once, etc.

Now let's look at an example of the PU pattern as part of a larger
structure:

ARTWORK
TYPE < ARTWORK

SCULPTURE PAINTING TYPE < PAINTING <
PAINTING

STRUCTURE

PORTRAIT LANDSCAPE

The entities PAINTING and PAINTING STRUCTURE constitute the
PU pattern. PAINTING is both a secondary and a principal entity: it is a
secondary entity with respect to ARTWORK, and it has secondary entities of
its own. PAINTING TYPE identifies those secondary entities. PAINTING
STRUCTURE associates instances of PAINTING.

Note that

178 Chapter 11

1. It doesn't matter whether two associated instances are both portraits or
both landscapes, or one landscape and one portrait.

2. If all associations are between portraits, we are not going to change
our map. PORTRAIT does not need a U of its own. After all, portraits
are paintings, and PAINTING STRUCTURE can handle the
associations quite well.

3. If we want to associate a painting with a sculpture, we have to create a
new PU pattern by creating ARTWORK STRUCTURE and
associating it with ARTWORK.

As keys go.

T: type nol# <
P: artwork id#,

type_nol#

S: artwork id# T: type no2# ^ ^ S: artwork id#,
^sj type_no2#

^ H U; artwork id#(l) ,
artwork id#(2)

S: artwork id# S: artwork id#

ARTWORK's primary key, artwork id#, copies down as an originating
primary key to its children and its grandchildren. The primary keys of the
two type entities copy down to their associated principal entities as foreign
keys. As for PAINTING, the entity that is P and S at the same time, its
primary key copies down to U twice, once for each of the two instances that
are being associated. Thus, U has a compound primary key in two parts.
Note that the primary key in PAINTING is not originating, but is copied
down from ARTWORK.

4.5 Sample

Here's a model of a schedule for baseball games. Each team is
represented as an instance in the principal entity, TEAM:

DESIGN PATTERNS 179

team id#
1
2
3

team name
New York Yankees
Houston Astros
Laramie Elks

We can define a baseball game as a contest between two teams. The U
entity (we've called it TEAM STRUCTURE, but we could as easily call it
GAME) can then be used as a schedule of games:

team id#(l)
1
2
1

team id# (2)
2
3
3

game_date
2004-06-01
2004-06-07
2004-06-10

Of course, this simple model has its Umits. It's going to be a very short
summer if no team can play any other team more than once.

4.6 Closely Related Patterns

TPSSU

5. NAME: TPSS PATTERNS

5.1 Intent

Assign instances of a dynamic principal entity to one and only one of a
number of subtypes; model exclusive categories of a named group (noun).

5.2 Structure

180 Chapter 11

5.3 Discussion

This pattern models what is sometimes called an "exclusive type"
association: an instance of P may be of (at most)̂ ^ one type (category) or
another, but it can be of only one: it can't change categories, even over time.

P has associated S entities if there is data that applies to one subcategory
of instances of P, but not to others. There will be a minimum of two S
entities in the pattern, but no maximum number.

The P table has the characteristics akeady defined: one originating
unique primary key of one or more columns and at least one non-key
attribute column. It will also have a column for the foreign key copied down
fromT.

P's association with its corresponding S entities is both identifying and
categorizing: it copies down as each S's primary key. The PS association is
mandatory-one-to-optional-one: an instance of P either is or is not an
instance of a particular S. Note that P's primary key may be compound.

Each S table has at least two columns:

• One or more columns for its primary key, which is copied down
fromP

• One or more non-key attribute columns containing the data specific
to the subtype.

In the simplest case the key columns are the same for each S. Some of
the S tables may have some non-key attributes in common.̂ ^ But not all: if a
non-key attribute is common to all S entities, it is placed in P.

The instances of one S table are unique to that table: no other S contains
any of those same instances.

T is always a parent entity. The T table has two or more columns:

An instance of P may exist independent of any S. That is, it may have no category: it
would be of "Type Zero." But this situation would usually be only temporary: a category
would be assigned later in the data entry process.

This does not, however, produce data redundancy. When a data item is input, it is stored in
the appropriate S table, but in that table alone: if the instance is of type 1, the data item is
stored only in the SI table, etc.

DESIGN PATTERNS 181

• One for its single-part originating primary key
• One and only one non-key attribute column containing the names of

the S entities and possibly the name of the P entity
• Other non-key attribute columns as necessary.

The names in T's name column must exactly match the names of the S
entities and the P entity.

5.4 Collaboration, Sample

TPSS can be the entire physical database. Let's consider

ARTWORK
TYPE < ARTWORK

ARCHITECTURE PAINTING SCULPTURE

The T table identifies the S tables:

type id#
1
2
3
4
5

type_name
architecture
painting
sculpture
decoration
other

The P table holds the records of all the artworks, including the data that
applies to them all, regardless of type:

artwork id#

1

2
3

4
5
6
7

type_id#

2

2
4

5
2
1
3

artwork_title

Triptych of the
Annunciation: The Prophet
Isaiah
Jacob's Dream
Sistine Chapel Vault

Suspended Artifact
Horses in a Field
Holy Cross Chapel
Pergamon Altar, East Frieze:
Athena Group

creation_
date
1430/35

1639
1508-
1512
1993
1649
1756-64

artwork_
classifier
altar, Old
Testament

Old Testament
Old Testament,
New Testament

animal
church
classical, god

182 Chapter 11

The S tables will hold records of artworks that are all of one type. The
included data applies to that type of artwork. Here's the PAINTINGS table:

artwork id#

1
2
5

accession_
number
2463 recto
1117

material

oil on panel
oil on linen
oil on linen

height

964
1650
800

width

320
2266
1000

Here's the SCULPTURE table:

artwork id#

3

aceession_
number

material

marble

height

2000

width

4000

depth

8

And here's the ARCHITECTURE table:

artwork id#
6

view
exterior

period
Baroque

comment
Houses the Treasure of St Vitus Cathedral.

Notice that some non-key attributes appear in more than one table.

TPSS can be part of a larger structure. The P entity can also be part of a
PP or PIP pattern—for example,

ARTIST <
ARTWORK

ARTIST

"V
ARTWORK

TYPE < ARTWORK

ARCHITECTURE SCULPTURE DECORATION

P may also be a mixed secondary/principal entity:

DESIGN PATTERNS 183

ARTWORK
TYPE

1

SCULPTURE

" V

1

PAINTING TYPE ^
V

1

PAINTING

1
1

PORTRAIT

1

LANDSCAPE

Here we have two TPSS patterns, with PAINTING serving as S to
ARTWORK and as P to PORTRAIT and LANDSCAPE. The inheritance of
keys is simple and obvious:

• artwork_type_no# is a foreign key in ARTWORK.
• artwork id# is copied down from ARTWORK as the primary key

for SCULPTURE, PAINTING, PORTRAIT, and LANDSCAPE.
• painting_type_no# is a foreign key in PAINTING.

5.5 Implementation

T is always a parent entity.

5.6 Closely Related Patterns

TRPSS, TPSSU

6. NAME: TRPSS PATTERN 6

6.1 Intent

Assign instances of a dynamic principal entity to one or more of a
number of subtypes; model inclusive categories of a named group (noun).

184

6.2 Structure

Chapter 11

6.3 Discussion

This pattern models what is sometimes called an "inclusive type"
association: an instance of P may be of more than one type (category) either
from the outset or over time. That also means that an instance of T may
apply, now or later, to zero, one, or many P instances.

P instances are connected to T instances in the R entity. The R entity is a
special case of the I entity: it resolves the many-to-many association
between T and P entities.

In most respects, the P, S, and T entities are the same as in the TPSS
pattern:

1. P has associated S entities if there is data that applies to one
subcategory of instances of P, but not to others. There will be a
minimum of two S entities in the pattern, but no maximum number.

2. The P table has the characteristics already defined: one originating
unique primary key of one or more columns and at least one non-key
attribute column.

3. P's association with its corresponding S entities is both identifying and
categorizing: it copies down as each S's primary key. The PS
association is mandatory-one-to-optional-one: an instance of P either
is or is not an instance of a particular S. Note that P's primary key may
be compound.

4. Each S table has at least two columns:
o One or more columns for its primary key, which is copied down

fromP
o One or more non-key attribute columns containing the data

specific to the subtype.

DESIGN PATTERNS 185

5. The key columns are the same for each S. Some of the S tables may
have some non-key attributes in common. But not all: if a non-key
attribute is common to all S entities, it is placed in P.

6. T is always a parent entity. The T table has two or more columns:
o One for its single-part originating primary key
o One and only one non-key attribute column containing the

names of the S entities and possibly the name of the P entity
o Other non-key attribute columns as necessary.

7. The names in T's name column must exactly match the names of the S
entities.

Now for basic difference between TRPSS and TPSS: In contrast to its
association in TPSS, in TRPSS the P entity does not receive a foreign key
copied down from T. Instead, the primary keys of P and T copy down to R.
Thus, the R table has at least two columns, one for each foreign key. The
two foreign keys constitute R's compound primary key. Other columns in
the R table might also exist. Their purpose would be to store information that
describes the roles that instances of P can take.

If the P key and the T key do not together define a unique instance of
R—that is, if a P instance has more than one role with respect to a particular
category—a third component must be added to make R's primary key
unique.

For example, consider the employee who can't decided whether to be
exempt or not. If the T entity defines "exemptness" (that is, the S entities are
"exempt" and "non-exempt"), the employee might be exempt for a time and
non-exempt for a time, then exempt again. The addition of another part to
R's key solves the problem.

P's association with R (P -|—1< R) is identifying, but not categorizing.
The same is true for T's association with R. The TR association may be

• Mandatory-one-to-mandatory-many (each T instance must be
associated with at least one R instance) OR

• Mandatory-one-to-optional-many (each T instance may have zero,
one, or many associated R instances) OR

• Mandatory-one-to-optional-becoming-mandatory-many (each T
instance must eventually have one or many associated R instances).

186 Chapter 11

6.4 Collaboration, Implementation, Sample

TRPSS may constitute the entire physical database. Let's consider this
example:

ORGANIZATION
TYPE • f -N ORGANIZATION

ROLE > ORGANIZATION

FOR PROFIT
NOT FOR
PROFIT

The ORGANIZATION table has columns like these:

organization id#
1
2

organization_name
Kimball Services
Inmon Charities

The ORGANIZATION TYPE table has these two columns:

type no#
1
2

type_description
for profit
not for profit

The ORGANIZATION ROLE table has four columns:

organization id#
1
1
2

type no#
1
2
2

from date
03/06/2001
5/20/2003

through_date
05/19/2003

In this example, the organization changed from a for-profit to a not-for-
profit about May 19, 2003.

6.5 Closely Related Patterns

TPSS

DESIGN PATTERNS 187

7. NAME: TPSSU PATTERN 7

7.1 Intent

Associate instances of the same dynamic principal entity when each
instance is, at the most, of one subtype; model recursion of exclusive
instances of the same named group (noun).

7.2 Structure

s s

7.3 Discussion

Hierarchies—organization charts and bills of material, for example—
sometimes include "exclusive type" associations: an instance of P will never
be of more than one type (category), and an instance of T will apply, now or
later, to zero, one, or many P instances.

P instances are connected to T instances directly: T's primary key is
copied down to P and determines which S entity will receive which instance
of P. In other words, T determines which subset of P instances is contained
in which S entity

In most respects, the P, S, and T entities are the same as in the TPSS
pattern:

1. P has associated S entities if there is data that applies to one
subcategory of instances of P, but not to others. There will be a
minimum of two S entities in the pattern, but no maximum number.

2. The P table has the characteristics already defined: one originating
unique primary key of one or more columns and at least one non-key
attribute column.

188 Chapter 11

3. P's association with its corresponding S entities is both identifying and
categorizing: its primary key copies down as each S's primary key.
The PS association is mandatory-one-to-optional-one: an instance of P
either is or is not an instance of a particular S. Note that P's primary
key may be compound.

4. Each S table has at least two columns:
o One or more columns for its primary key, which is copied down

fromP
o One or more non-key attribute columns containing the data

specific to the subtype.
5. The key columns are the same for each S. Some of the S tables may

have some non-key attributes in common. But not all: if a non-key
attribute is common to all S entities, it is placed in P.

6. T is always a parent entity. The T table has two or more columns:
o One for its single-part originating primary key
o One and only one non-key attribute column containing the

names of the S entities and possibly the name of the P entity
o Other non-key attribute columns as necessary.

7. The names in T's name column must exactly match the names of the S
entities.

As in TPSS, P receives a foreign key copied down from T. T's
association with P (T -|—1< P) is neither identifying nor categorizing. Thus,
the foreign key that P receives from T is not part of P's primary key. Take,
for example the case of an employee who is either a manager or a
nonmanager, and who can never switch from one category to the other. The
employee will be identified in the entity EMPLOYEE by a (usually) single-
part primary key (e.g., employee id#), and the foreign key (type_no#) will
happily assign the employee to the appropriate S entity.

The TP association may be

• Mandatory-one-to-mandatory-many (each T instance must be
associated with at least one P instance) OR

• Mandatory-one-to-optional-many (each T instance may have zero,
one, or many associated P instances) OR

• Mandatory-one-to-optional-becoming-mandatory-many (each T
instance must eventually have one or many associated P instances).

As for the other entities, it's business as usual. The primary key
identifying the employee will be copied down to the S entity designated by
T. The U entity will receive two copies of P's primary key for each
relationship between two employees that must be recorded. One copy

DESIGN PATTERNS 189

represents one employee, the other the other employee. Since P's association
with U is identifying, the relationship between the two employees will be
identified by a two-part primary key comprising the two foreign keys copied
down from P.

7.4 Collaboration, Implementation, Sample

TPSSU can be the entire physical database, though such a relatively
elaborate pattern is more likely to occur in large modeling projects and thus
have connections to other patterns.

Let's look at a business that is organized in a hierarchy. It has

• a President (on the management payroll) who manages
• many Vice Presidents (on the management payroll), who in turn

manage
• many workers (on the nonmanagement payroll).

It's an awfully strict hierarchy: A manager can never become a
nonmanager, and a nonmanager can never become a manager.

We'll model the business this way:

EMPLOYEE
TYPE

^ EMPLOYEE < EMPLOYEE
STRUCTURE

MANAGER NONMANAGER

The EMPLOYEE TYPE (T) table has two columns:

type no#
1
2

type_description
manager
nonmanager

The EMPLOYEE (P) table has at least two columns:

employee id#
1
2
3
4
5

type_no#
1
1
1
2
2

title
President
VP Administration
VP Operations
clerk
welder

190 Chapter 11

The MANAGER (S) table has at least two columns:

employee id#
1
2
3

annual_salary
300000
200000
200000

The NONMANAGER (S) table has at least two columns with these
headings:

employee id#
4
5

hourly_wage
6.50
22.00

The EMPLOYEE STRUCTURE (U) table shows who manages whom:

employee id# parent
1
1
2
3

employee_id# child
2
3
4
5

7.5 Closely Related Patterns

PU, TPSS

8. NAME: TRUPSS PATTERN 8

8.1 Intent

Associate instances of the same dynamic principal entity when each
instance is of zero, one, or many subtypes; model recursion of inclusive
instances of the same named group (noun).

DESIGN PATTERNS 191

8.2 Structure

"V
< ^

8.3 Discussion

As in TRPSS, this pattern models an "inclusive type" association: an
instance of P may be of more than one type (category), and an instance of T
may apply, now or later, to zero, one, or many P instances. As in TPSSU, the
U entity relates different instances of the P entity. But TRUPSS has one
major difference from both: the U entity relates different P instances in their
different roles,

P instances are connected to T instances in the R entity. The R entity is a
special case of the I entity: it resolves the many-to-many association
between T and P entities.

Li most respects, the P, S, T, and R entities are the same as in the TRPSS
pattern:

1. P has associated S entities if there is data that applies to one
subcategory of instances of P, but not to others. There will be a
minimum of two S entities in the pattern, but no maximum number.

2. The P table has the characteristics already defined: one originating
unique primary key of one or more columns and at least one non-key
attribute column.

3. P's association with its corresponding S entities is both identifying and
categorizing: its key copies down as each S's primary key. The PS
association is mandatory-one-to-optional-one: an instance of P either
is or is not an instance of a particular S. Note that P's primary key may
be compound.

192 Chapter 11

4. Each S table has at least two columns:
o One or more columns for its primary key, which is copied down

fromP
o One or more non-key attribute columns containing the data

specific to the subtype.
5. The key columns are the same for each S. Some of the S tables may

have some non-key attributes in common. But not all: if a non-key
attribute is common to all S entities, it is placed in P.

6. T is always a parent entity. The T table has two or more columns:
o One for its single-part originating primary key
o One and only one non-key attribute column containing the

names of the S entities and possibly the name of the P entity
o Other non-key attribute columns as necessary.

7. The names in T's name column must exactly match the names of the S
entities and possibly the name of the P entity.

8. T and P are both parent entities to R. P's association with R (P -|—1<
R) is identifying, but not categorizing. The same is true for T's
association with R. The primary keys of P and T copy down to R and
together constitute R's primary key. The R table has at least two
columns:

o One for each foreign key
o One or more non-key attribute columns containing relevant

information such as the name or a description of the role.
9. If the P key and the T key do not together define a unique instance of

R—that is, if a P instance has more than one role with respect to a
particular S category—a third component must be added to make R's
primary key unique.

10. The TR association may be
o Mandatory-one-to-mandatory-many (each T instance must be

associated with at least one R instance) OR
o Mandatory-one-to-optional-many (each T instance may have

zero, one, or many associated R instances) OR
o Mandatory-one-to-optional-becoming-mandatory-many (each T

instance must eventually have one or many associated R
instances).

What is new with TRUPSS is the RU association. R has a compound
primary key of two or more parts. The function of the U entity is to relate
two instances of R, so R's compound primary key copies down twice to the
U entity. Thus, U has a compound primary key of at least four parts:

kev no# (1), tvpe no# (1), kev no# (2), tvpe no# (2).

DESIGN PATTERNS 193

The two key no# foreign keys originate in P, and the type no# keys
originate, of course, in T.

Notice one interesting thing, though: the key no# foreign keys may refer
to the same instance of P, as long as the associated keys type no# (1) and
type no# (2) are different. For example, an instance of U may relate English
Paper Products in its role as customer to English Paper Products in its role as
supplier. In U, we'd haye an instance like this: key no# (1), type no# (1),
key no# (1), type no# (2).

Likewise, two different instances of P can be related to each other eyen
though they are of the same type: English Paper Products as a customer can
be related to Graziano Paints as a customer. U would haye an instance like
this: key no# (1), type no# (1), key no# (2), type no# (1).

Presumably, English Paper Products as customer could eyen be related to
itself in that same category, English Paper Products as customer. If there is a
need, the U entity can accommodate such an instance. If, howeyer, the
interest is in the role alone, in English Paper Products as a customer, the
information is stored in the R table.

8.4 Collaboration, Implementation, Sample

TRUPSS may constitute the entire physical database, though that is
unlikely. Let's look at a specialized example:

ARTIST TYPE

ARTIST ROLE
STRUCTURE

<

IT

ARTIST ROLE ^ - ARTIST

194 Chapter 11

The purpose of this database is to track collaborations between artists,
some of whom are painters and some of whom are sculptors.^^

The ARTIST table has columns like these:

artist id#
1
2
3
4

artist name
Hans von Kulmbach
Tilman Riemanschneider
Claes Oldenburg
Donald Judd

The ARTIST TYPE table has these two columns:

type no# type_description
sculptor
painter

The ARTIST ROLE table has columns like these:

artist id#
1
1
2
3
3
4

type no#
1
2
1
1
2
2

role_comment
Master of Public Works
Member, Guild of St Luke
Master carver in limewood
Presented "found objects" as sculpture
Associated with Pop Art movement
Associated with Pop Art movement

The ARTIST ROLE STRUCTURE table has columns like these:

artist id#(l)
1
1
3

tVpe_no# (1)
1
2
1

artist id# (2)
2
2
3

type no# (2)
1
1
2

froiii_date
1545
1537
1968

We're being told here that

• Hans von Kulmbach and Tilman Riemanschneider worked together
as sculptors from 1545.

• Hans von Kulmbach worked alongside Tilman Riemanschneider, the
one as a painter and the other as a sculptor, from the year 1537.

• Claes Oldenburg worked both as a painter and a sculptor from 1968
onward.

This is just an example. Don't trust it as art history.

DESIGN PATTERNS 195

A freestanding database of this sort is pretty limited in its usefulness. It
needs to be integrated into a database of larger scope, one including entities
like LOCATION.

8.5 Closely Related Patterns

TRPSS, TPSSU

Chapter 12

FROM LOGICAL TO PHYSICAL
Wherein we prepare to make dreams come true

1. REVISE, REVISE, REVISE ... AND FINALIZE

Ideally, enterprise data modeling is a continuous process. After all,
change is constant: the economy changes, the competition changes, new
regulations and standards come into effect, and the result is change in your
business. But fact is, you've been doing process/operational modeling, aimed
toward automating functions in your department. That means you have a
project deadline to meet. For the short term and immediate purposes, you've
got to come to a conclusion.

So. You have completed your logical data model. All the /s are dotted, all
the Ts crossed. Now's the time to perform a final check.

Let's walk down a basic checklist.

1. If you've used an automated tool to build your model, use it again to
check for obvious errors. With some tools you can set the level of
sensitivity for error checking, so it can seek out problems of varying
degrees of seriousness. Set the tool to find anything and everything
that could possibly cause a problem, and run the diagnosis. When error
and warning messages appear, some will be very familiar and will not
represent real problems. But you may find something you missed
earher. Do whatever is necessary to make the model consistent with
itself: the cost of finding and fixing an error will only grow as
development progresses.

198 Chapter 12

2. Check your model against the business statements. Using the
Statement-Entity matrix, check to ensure that all business statements
are consistent with each other, that no business statements are missing,
and that you have not created business statements out of thin air. Your
goal is to ensure that the problem is stated correctly and that you are
solving the right problem. Check also to ensure that every row and
every column in the Statement-Entity matrix has at least one check
mark and that no row or column is too heavily populated with check
marks.

3. Check your data map against the eight design patterns. The
patterns show how entities are put together; they help you do the job
quickly, cheaply, and accurately. Check to make sure that every pair of
entities fits a design pattern. Take time to check (1) cardinality, (2)
optionality, and (3) how the primary keys copy down from parent
entities to child entities.

4. Make sure your entity associations make real-world sense. Make
complete sentences out of each entity pair. In the case of role and
intersecting entities, you'll have to consider three entities at a time,
and structure entities talk to themselves. Get together with the other
subject matter experts, and read your sentences out loud to them. If
your project methodology uses walkthroughs (Yourdon 1989: 515-
521), conduct a walkthrough with the subject matter experts and the
database people. This is an excellent way to get these groups to start
communicating, and this is the right time to do it.

5. Now we get down to details:
o Are all many-to-many associations properly resolved?
o Are all associations valid?
o Are all key structures correct?
o Does every secondary entity have at least one mate?
o Does each entity have at least two attribute columns? And is at

least one column used for all or part of the primary key?
o Is a domain specified for each attribute?
o Is a length (and possibly a precision) specified for each attribute

that requires one?
o If you've defined the key attribute's domain (and length, if

necessary) in a parent entity, does the corresponding key in the
child entity have compatible characteristic(s)?

FROM LOGICAL TO PHYSICAL 199

2. ESTABLISHING REFERENTIAL INTEGRITY

You're approaching the point when your logical data model must be
translated into the tables of a physical database reahzed in a database
management system (DBMS). But first, some heavy lifting. To keep your
physical database consistent with itself, you will probably want to enforce
referential integrity. All we mean by referential integrity is this:

If we have an association between row A in the parent table and rows B,
C, etc., in the child table, what do we need to do to maintain consistency
between rows A and rows B and C and beyond?

According to the logical data model, the parent's primary key is passed
to the child as a foreign key. In the physical database, whenever a row is
added, updated, or deleted in the parent table, constraints—for example, a
foreign key constraint—are applied. These constraints define what changes
are subsequently permitted in the child table. Can rows be added? Can they
be deleted? Can they be changed? And how?

Similar constraints limit changes to the parent table when the child table
is changed. For example, if every row in the parent table must have at least
one corresponding row in the child table, what happens when row B in the
child table is deleted? Logically, the DBMS would

1. find the corresponding row (row A) in the parent table,
2. find out if any other rows in the child table correspond to row A,
3. if other such rows exist, take no action, OR
4. if no other such rows exist, delete row A.

But sometimes, our business statements may be ambiguous about
referential integrity, or enforcement of referential integrity may not even be
desirable. For example, in data warehouses vast quantities of data are often
inserted into huge tables in bulk. If referential integrity is turned on,
performance can be impossibly slow. But if referential integrity is turned off,
all insertions can usually be completed in a fraction of the time that would
otherwise be required.

Referential integrity is a feature provided by many (but not all) database
engines, and a valuable feature it is. If your Database Administrator
(DBA) builds referential integrity into the physical database, your
developers will not have to spend their time enforcing referential integrity in
code. Instead, they can capture and compensate for the errors produced when
a user attempts to violate an integrity constraint. They may even develop or

200 Chapter 12

implement application features that keep users from attempting to violate
referential integrity in the first place.

2.1 Referential integrity at work

Let's look at an example. Here's a familiar TPSS pattern:

STUDENT TYPE < STUDENT

UNDERGRADUATE GRADUATE

Now let's imagine the corresponding physical database tables (simplified, of
course):

T STUDENT TYPE
1
2

Undergraduate
Graduate

P STUDENT
1
2

Fred Smith
Virginia Jones

S UNDERGRADUATE
1 3.44

S GRADUATE
1 University of Wyoming

In the UNDERGRADUATE table we store grade point averages for
undergraduate students. In the GRADUATE table we store the name of the
graduate student's undergraduate degree granting institution.

Let's focus on the association between the STUDENT table and the
UNDERGRADUATE table:

STUDENT -I—o- UNDERGRADUATE

We are going to consider what we want to have happen when an insertion, a
deletion, or an update occurs. (The database does not change when we
merely read the contents of a row.) To do this, we need to look at each
action from both sides of the association: what happens when we insert.

FROM LOGICAL TO PHYSICAL 201

delete, or update on the parent table, and what happens when we do the same
on the child table. Here are the cases we'll consider:

Parent
Child

Insertion
Case 1
Case 2

Deletion
Case 3
Case 4

Update
Case 5
Case 6

We want to come up with procedures for imposing our will on these
tables. And here's our analysis.

Case 1: Parent table row insertion

A new row is to be inserted into the STUDENT table. We don't yet want
to insert a corresponding row or rows into the UNDERGRADUATE table—
perhaps because we don't yet know whether the student will be enrolling as
an undergraduate or as a graduate student.

Ruling: Allowed by our business statements and by the PS association,
which does not require an instance of P to have a subtype. Thus, no
corresponding (optional) row is required in the UNDERGRADUATE table.

Case 2: Child table row insertion

A new row is to be inserted into the UNDERGRADUATE table. We
don't yet want to insert a corresponding row into the STUDENT table.

Ruling: Not allowed by our business statements and the nature of the PS
association: if an undergraduate exists, he or she has to be registered as a
student. Thus a corresponding (mandatory) row is required in the STUDENT
table.

Solution: Insert a row into the STUDENT table, and then insert the
corresponding row into the UNDERGRADUATE table.

Case 3: Parent table row deletion

An existing row is to be deleted from the STUDENT table. We don't yet
want to delete the corresponding rows from the UNDERGRADUATE table.

Ruling: Not allowed according to our business statements and the nature
of the PS association. A row in the UNDERGRADUATE table demands a
corresponding (mandatory) row in the STUDENT table.

Solution: Delete the corresponding rows from the UNDERGRADUATE
table, and then delete the row from the STUDENT table

202 Chapter 12

Case 4: Child table row deletion

An existing row is to be deleted from the UNDERGRADUATE table.
We don't yet want to delete the corresponding row from the STUDENT
table.

Ruling: Allowed according to our business statements and the nature of
the PS association. A row in the STUDENT table does not demand a
corresponding (optional) row in the UNDERGRADUATE table.

Case 5: Parent table row update

The key value for an existing row in the STUDENT table is to be
changed, perhaps from " 1 " to "1564". We don't yet want to update the
corresponding row or rows in the UNDERGRADUATE table.

Ruling: Not allowed according to our business statements and the nature
of the PS association. A row in the UNDERGRADUATE table demands a
corresponding (mandatory) row in the STUDENT table.

Solution: Insert a new row into the STUDENT table with the key value
"1564". Update the corresponding row in the UNDERGRADUATE table
with the new key value. Delete the old row in the STUDENT table that has
the key value of " 1 " .

Case 6: Child table row update

The key value for an existing row in the UNDERGRADUATE table is to
be changed, perhaps from " 1 " to "1564". We don't yet want to delete the
corresponding row in the STUDENT table.

Ruling: Not allowed according to our business statements and the nature
of the PS association. A row in the STUDENT table still does not demand a
corresponding row in the UNDERGRADUATE table. However, if a
corresponding row does exist in the UNDERGRADUATE table, that row
must have a key which exists in a (mandatory) row in the STUDENT table.

Solution: Insert a new row into the STUDENT table with the value
"1564". Update the corresponding row in the UNDERGRADUATE table
with the new key value. Delete the row in the STUDENT table with the
value of " 1 " .

FROM LOGICAL TO PHYSICAL 203

2.2 Referential integrity in general

So much for the STUDENT -|—o- UNDERGRADUATE association.
Now let's return to referential integrity in general, so that we can apply it to
any kind of valid association. IBM defines referential integrity this way:

Referential integrity is the state of a database in which all values of all
foreign keys are valid. Each value of the foreign key must also exist in
the parent key or be null. (IBM, iSeries Information Center)

Referential integrity applies to associations, and each association may
have zero or more of what sire called referential constraints. Each
referential constraint simply says what actions are allowed and what actions
are not allowed when referential integrity is invoked. Different constraints
are invoked at different times in the process of executing commands to make
changes to the database.

Sometimes, more than one referential constraint applies to an association,
or multiple referential constraints may be involved—as, for example, when
deleting a row in a child table of a child table. In such cases, the order of
execution must be considered.

The DBA will know ways of getting things done with or without the use
of referential integrity. The DBA uses English-Uke phrases (e.g. ON
UPDATE NO ACTION) to tell the database engine how to build referential
integrity into an association.

To see how this might be done, let's look at each kind of action (insert,
delete, update) in turn. Our discussion won't be exhaustive, and you should
be aware that different database engines implement referential integrity in
different ways.

2.2.1 Insertion

Recall the rule we set out in Chapter 5, that every association must have
exactly one strong mandatory side. We call this the "strong mandatory
'one'" rule. When referential integrity is invoked, this rule means that every
row in a child table must have a foreign key value linking it to a
corresponding row in a parent table. Thus, the row in the parent table must
exist before any corresponding row can be inserted into the child table.

204 Chapter 12

2.2.2 Deletion

IBM DB2 recognizes four choices when performing a deletion with
referential integrity: NO ACTION, RESTRICT, CASCADE, and SET
NULL. If you attempt to delete a row from a parent table, one of these four
constraints will apply.

If we try to delete a row from a parent table and ON DELETE NO
ACTION or ON DELETE RESTRICT is specified, DB2 will check all child
tables for corresponding rows. If even one corresponding child row exists,
the operation fails. That's because the "strong mandatory 'one'" rule
requires that a row in a child table have a corresponding row in a parent
table. We can't delete the row from the parent table and leave a row in a
child table with no parent.

If ON DELETE CASCADE is specified for the parent table, deleting a
row from the parent table will result in deletion of all corresponding rows in
the child table. That way, there are no orphaned rows in the child table.
Referential integrity is enforced and the database is in a consistent state. But
we need to be sure we really wanted to lose the data in the child table.

If we delete a row in the parent table and ON DELETE SET NULL is
specified, DB2 finds all the corresponding rows in the child table, finds the
foreign keys inherited from the deleted row, and sets all those foreign keys
to a value of null. All connection with any row in the parent table is lost, but
the rows in the child table, and their precious data, remain. Of course, this is
inconsistent with the "strong mandatory 'one'" rule.

Our point is this: the "strong mandatory 'one'" rule builds referential
integrity into the logical data model. Our resulting physical database is thus
less likely to have orphaned rows in child tables, rows that lack
corresponding rows in parent tables. And once constructed, our database is
likely to be in (and stay in) a consistent state: all rows in all tables are
present and accounted for. You will need to work with the DBA to define
appropriate referential integrity.

2.2.3 Update

For performing an update with referential integrity, IBM DB2 recognizes
two choices: NO ACTION and RESTRICT. The difference between these
choices is subtle, but each works to ensure that the database remains in a
consistent state. The way IBM explains it,

FROM LOGICAL TO PHYSICAL 205

"The update rule of a referential constraint is specified when the
referential constraint is defined. The choices are NO ACTION and
RESTRICT. The update rule applies when a row of the parent or a row of
the dependent table is updated.

"In the case of a parent row, when a value in a column of the parent key
is updated:

• if any row in the dependent table matched the original value of
the key, the update is rejected when the update rule is
RESTRICT

• if any row in the dependent table does not have a corresponding
parent key when the update statement is completed (excluding
AFTER triggers), the update is rejected when the update rule is
NO ACTION.

"In the case of a dependent row, the update rule that is implicit when a
foreign key is specified is NO ACTION. NO ACTION means that a non-
null update value of a foreign key must match some value of the parent
key of the parent table when the update statement is completed.

"The value of a composite foreign key is null if any component of the
value is null." (IBM DB2 Technical Support)

2.2,4 CRUD

CRUD stands for "Create, Read, Update, and Delete." These are the only
four operations that can be performed on one or more rows in a database
table.

We can use CRUD matrices to specify

1. Which individuals have authority to access which tables in a database,
and what operations those individuals are allowed to perform

2. Which business processes need to access which tables in a database,
and what operations can be performed on their behalf

3. Which screens and reports require access to which tables in a database,
and what operations they can perform.

A CRUD matrix can often communicate a great deal of information in a
small space. Consider the following CRUD matrix, generated using Visible
Advantage:

206 Chapter 12

Entities

Processes

Add Employee

1 Add Person Address

Add Person Skill

1 Create ADDRESS

1 Create APPLICANT

1 Create EMPLOYEE

Create EXEMPT EMPLOYEE

Create INTERNAL
1 ORGANIZATION

1 Create JOB

Create JOB SKILL

Create NON EXEMPT
1 EMPLOYEE

1 Create ORGANIZATION

>
o
o
J)
m
CO
0)

cr

c

>
"D
I—
O >
z

C

c

c

c

c

c

m

5
• <

m
m

cr

cr

cr

cr

cr

cr

m
X
m
"D
H
m

5
•<
m
m

cr

cr

cr

cr

cr

cr

z
H m
z >
r"
O
DO
O
>
z
H

o
z

cr

r

cr

O
03

r

c

c

r

c

O
CD

CO

r-r-

c

z
o z
m
X
m
H

m

r"
o
m
m

cr

cr

cr

cr

cr

cr

This CRUD matrix is of the second type, Hnking business processes with
entities. It details which business processes create and read rows in each
table. Of course, a more complete CRUD matrix would show processes for
updating rows in and even deleting rows from tables. Your DBA should be
very familiar with CRUD matrices, and you will find that they contribute
substantially to communication.

3. PREPARING FOR THE DATABASE PEOPLE

When you've finished all this checking, you can say that you have
answered the "What" question: you've defined what the business people
want to do with the database that is to be built. The purely logical work is
done, at least until someone changes a business statement. Now it's up to you
to prepare to talk to the database people in heavy-duty database terms and to
the developers who will write or implement the user interface.

FROM LOGICAL TO PHYSICAL 207

Be aware that business people and technical people use different
vocabularies. While we have used the words "entity," "attribute," and
"association," for example, database people are much more likely to express
themselves in the corresponding physical terms: "table," "column," and
"join."

Your immediate task is to convert your logical data model into a
physical database. If a suitable automated tool is available, use it to
automatically copy the logical data model from the tool's logical side to its
physical side. Using the facilities of the tool's physical side, you'll find that
(1) many of the required conversions have been accompUshed automatically
and (2) the tool makes many of the remaining conversions easy.

Here, then, are the conversions you need to make:

1. Convert each logical entity into a physical table. The table may be
split into parts later, or it may be combined with another table or
tables. Worry about splits and merges later.

2. Convert each logical attribute into a physical column. Again, mergers
and splits may occur later.

3. Convert the domain for each logical attribute into a corresponding
physical data type, complete with length and precision where required.
Remember: different database systems have different physical data
types, as well as different implementations of common types. Dates
and times can usually be specified in different formats: you'll need to
specify what works for your particular problem. Your organization
may provide a standard for you to follow.

4. Ensure that all table names and column names are compatible with the
database engine you plan to use. Pay attention to length limits. DB2
UDB, for example, limits names to 18 characters unless the DBA
specifies a different value.

5. Convert all logical "mandatory-one-to-optional-becoming-many"
(-|—o|<) associations to physical "mandatory-one-to-optional-many"
(-|—o<) joins^ .̂

59 A join is a DBMS operation that takes data from two or more tables and combines them to
create a virtual table that is optimized for a particular purpose. A join occurs when data are
inserted into, read from, updated in, or deleted from the tables at the same time.

208 Chapter 12

6. Convert all logical "mandatory-one-to-optional-becoming-one"
(-|—o|-) associations to physical "mandatory-one-to-optional-one"
(-I—0-) joins.

4. MORE HEAVY LIFTING

Several other tasks remain before our data model is ready to become a
database. The DBA is the person best qualified to undertake them.

1. Our logical data model used identifying associations to define the
compound keys for R, I, and U entities. But when it comes to building
the physical database, the DBA may have to convert some of those
associations to non-identifying associations, reducing the number of
parts to the primary key. One benefit of this change might be to reduce
the number of joins required for an operation against the database. A
one-column key may offer much better performance than a five-
column key.

2. Type entities might be expressed in some other form, perhaps as check
constraints (showing, for example, a hst of valid values), eliminating
the need for a table (and consequently eliminating the need for a join).

The DBA will also be very interested in activities which we haven't
begun to explore:

• Estimating table size, index size, query activity, growth, transaction
volume, access path volume, and other measurable aspects of the
physical database

• Planning indexes for key attributes, candidate keys, selection
attributes, and any other attributes on which queries will normally be
run

• Defining "views"—windows into the database—to make
development easier and to allow for improvements in security

• Defining locks: what should happen when two users attempt to
change the same row in the same table at the same time?

• Planning and optimizing queries
• Optimizing physical storage.

And of course, when push comes to shove, your DBA will have to deal
with issues like these:

FROM LOGICAL TO PHYSICAL 209

• What database engine you're going to use: e.g. DB2 UDB for the
AS/400, DB2 UDB under OS/390, Microsoft SQL Server under
Windows 2000, or any one or more of dozens of other products

• Where you (or the technical people) want the actual database or
parts of the database to reside: e.g., in Boston or Los Angeles, on the
fast server or the slow server, or even with different parts of the
same database in different locations

• Whether your business operations will be adding and updating data
(inserting rows) more frequently (or less frequently) than they will
be reading rows to generate printed reports

• Whether anyone expects to tap the database for goodies: extract
data, transform it in various ways, and load the transformed data into
another file structure, such as an operational data store or a data mart

• What indexing, backup, and other options are needed and whether
they're available (or can be acquired for a slight additional charge)
for the target database engine

• Whether the database engine employs cost-based optimization or
rules-based optimization in planning execution of SQL (Structured
Query Language) statements.

You may not know how to answer many of these questions. Some may
not even make much sense right now. The Database Administrator is
responsible for answering them, and you need to make yourself available
when he has questions. From this point on, the DBA is the most important
friend you've got, the person responsible for your database and its associated
applications, the person who knows from experience what works and what
doesn't work and where to get answers. Get the DBA on your side and keep
him there.

By the time he has finished all his estimating, planning, defining, and
optimizing, your DBA should have a very good idea of how he will actually
construct the physical database. He will almost certainly want to
denormalize some of the structures you spent so much time normalizing.

5. DENORMALIZATION

Recall that when we normalized, we gave every non-key attribute a home
in exactly one entity. Each non-key attribute was entirely dependent on the
key, the whole key, and nothing but the key. In contrast to normalization.

210 Chapter 12

denormalization takes what used to be normalized entities and moves their
attributes around in various ways.

You may ask, "Why would anyone denormalize a normalized database?"
The usual answer is "To improve performance." For instance, retrieving data
from a fully normalized database is often slow, because related data items
must be retrieved simultaneously from more than one table using one or
more joins. Joins are expensive in terms of computing performance. Reduce
the number of joins, and you improve performance. Denormalize, and you
reduce the number of joins.

Of course, we don't want to denormalize if we don't have to. In his
outstanding book on database administration, Craig MuUins acknowledges
"the simple rule of creating a table for each entity in the logical data model,"
and he advises that "The only reason to deviate ... is if application
performance or data availability would be unacceptable without a change."^

So what should we do if our physical database isn't up to snuff? Mr.
Mullins recommends several very well defined types of denormalization and
establishes the situations in which they should be used (2002: 141-151).
While the work of denormalization is best left to your DBA, this discussion
should help you to understand what he is doing and why he is doing it.

Let's consider ten different problems.

Problem 1: Two or more tables must be joined regularly, but the cost of
repeatedly joining the tables is high.

Solution: Create prejoined tables.

How: Join the tables once and store and reuse the result, rather than
executing the join repeatedly. This creates redundant data and a need for
extra management.

Example: We have a logical TPSS pattern normalized to Third normal
form. Instead of creating four or more physical tables, we create a single
table, with the columns from the secondary and type entities rolled into the
dynamic P table. Of course, a lot of null values will have to be created: rows
representing subtype A will not have values for the attributes associated with
subtype B, and vice versa. But the single table has fewer joins, and as we've
said, joins are expensive.

Mullins 2002: 122; see also Chapter 4: Database Design (121-158).

FROM LOGICAL TO PHYSICAL 211

Problem 2: An end user report requires formatting or data manipulation that
SQL cannot provide.

Solution: Create a report table.

How: Prepare a table with one column for each report element, physically
sequenced to eliminate sorting. The report table contains data that already
exists elsewhere in the database. So, once again, we have redundant data
requiring management. But the table can be populated once, then maintained
only as necessary, and the report is much easier and faster to generate.

Problem 3: An active application system has some users querying the
database and other users modifying the same database at the same time. A
resource conflict exists, because insertions and reads are being attempted
simultaneously on the same physical database.

Solution: Create mirror tables.

How: Create a set of tables in the foreground for application processing
(updates) and a different set of tables in the background for decision support
(reads). The background tables will be updated only at intervals (for
example, in the case of a data warehouse), and not in real time

Problem 4: Separate pieces of one normalized table are accessed by distinct
groups of users with little or no overlap.

Solution: Create split tables.

How: Split the table, either horizontally or vertically. For example, if
geography (distributed access) is an issue, one logical table could be divided
like so: the top physical half of the rows could be placed on a server in
Boston, while the bottom physical half could reside on a server in Los
Angeles. Each half is determined by a range of key values: rows with a key
value less than X go to Boston, and the rest go to Los Angeles.

Then again, a vertical split might be more appropriate if, say, corporate
management resides in Boston and the publications division is in Los
Angeles. The vertical split could divide the logical table so that text and
numbers are in one physical half and CLOBs (Character Large Objects) are
in the other. Rows in each portion of the table would be kept in sync by
repeating the same key values: each row in Boston has the same key value as
its partner in Los Angeles.

Problem 5: Two tables are associated in a one-to-one relationship.

Solution: Combine the tables into a single table.

212 Chapter 12

How: Just do it. This is a good idea for those situations in which the
logical data modeler erred. (Remember: -|—|- associations should be
avoided.) However, combining physical tables may not always be a good
idea. For instance, when fixed length data and LOBs (Large Objects) exist in
the same logical row, the physical characteristics of LOBs may demand
treatment different from the treatment that fixed length data requires.

Problem 6: Almost every time that data in one table is accessed, a column
or columns from a second table are accessed.

Solution: Create redundant data.

How: Repeat the data from the second table in the first table. This
reduces the penalty for repeated joins, but it also increases the difficulties of
managing the database. After all, changes to the data in the second table will
have to be migrated to the first table. Whether this is done in real time or by
batch will be affected by factors such as how critical the data is and how
often it changes.

Problem 7: Repeating groups of data are regularly retrieved.

Solution: Structure the table to hold repeating groups.

How: The repeating groups are stored as cells in the same row of a table.
Create extra columns in a table and populate them with the repeating group
data. Of course, this solution violates even the First normal form rule.

Problem 8: Repeated calculation of derived data is prohibitively expensive.

Solution: Store derived data.

How: Derive the data once and store it in a column.

Example: Consider your checking account. If the bank's database were
normalized to Third normal form, your bank would have to recompute your
balance, starting from the time you opened the account, every time you made
a balance inquiry and whenever your monthly statement appeared.
Obviously, this activity can be fraught with error, and it is expensive. By
deriving and storing data, we reduce expense.

Problem 9: Data represent a hierarchy, such as a parts explosion (for a
manufacturing firm) or an organization chart. This is the situation we
addressed earUer with the Structure entity: each instance relates a part, for
instance, to one of its components—which is, of course, another part.

Solution: Create a speed table.

FROM LOGICAL TO PHYSICAL 213

How: Generate a table that represents a pretraversed hierarchy. Each
physical speed table, corresponding to our logical structure entity, has a two-
part primary key. In addition, the speed table contains two columns not
found in the structure entity. The first column shows the number of levels in
the hierarchy intervening between the item identified by the parent primary
key and the item identified by the child primary key. The second added
column specifies whether the item identified by the child primary key is at
the bottom of the hierarchy.

For example, here are columns that a speed table for a parts explosion
might have:

PARTHERARCHY
Parent part number
Child part number
Level number
Bottom level

(table name)
(key column)
(key column)
(number of levels between parent and child)
(yes or no)

So much for columns. In addition-and this is the "pretraversed" part-the
table has a row for each item at any level of the hierarchy which is in a
hierarchical relationship with another item. If two items, at the same or
different levels, do not have a hierarchical association with each other, no
such row exists. If we have a large number of related items in our hierarchy,
we will have a table with a great many rows.

Let's look at another example. A university has list of all employees,
given in table form below. For brevity, we assume that no other individuals
are employees.

Key
1
2
3

1 4
5
6
7

Title
President
VP of Academics
VP of Research
Dean of Animal Science
Dean of Plant Sciences
Professor of Plant Sciences
Associate VP Patents

Person Name
Able
Baker
Charlie
Delta
Echo
Foxtrot
Golf

This is a properly normalized table, but the speed table on the many side of
the -|—o< relationship is not.

The speed table needs to show that Dr. Baker and Dr. Charlie report
directly to President Able, that Dean Delta and Dean Echo report directly to
Vice President Baker, that Professor Foxtrot reports directly to Dean Echo,
and that Dr. Golf reports directly to Dr. Charlie.

214 Chapter 12

In addition, it needs to show multilevel relationships with a level distance
greater than 1: Deans Delta and Echo reporting (though not directly) to
President Able; Professor Foxtrot reporting to President Able, Dr. Baker,
and Dean Echo; and Dr. Golf reporting to President Able. Each of these
pairs involves at least three levels in the hierarchy (remember, these are not
direct reports).

Here's what the speed table might look like: The "Parent" key shows
who is higher in the hierarchy. The "Child" key shows who is lower in the
hierarchy. The Level column shows the number of levels between the entry
in the "Parent" column and the entry in the "Child" column. The "Lowest"
column contains "Y" if the entry in the "Child" key column is at the bottom
of the hierarchy (nobody is reporting to the person identified by the "Child"
key) and "N" if the person identified by the "Child" key has subordinates.

Parent

2
2
2
3
5

Child
2
3
4
5
6
7
4
5
6
7
6

Level
1
1
2
2
3
2
1
1
2
1
1

Lowest
N
N
Y
N
Y
Y
Y
N
Y
Y
Y

If we tried querying our hierarchy without having a speed table, we'd get an
inefficient and time consuming mess: the query would be many lines long
and take a long time to run, chewing up computer resources better used
elsewhere. Depending on the number of layers in the hierarchy, the query
could become overwhelmingly complex.

Problem 10: The database management system's physical limitations
adversely affect performance.

Solution: Other denormalization.

How: Denormalize the data as required to fit the limitation.

Example: DB2 has explicit rules about the relative sequence of variable
length and fixed length data in a row. The DBA knows how to apply these
rules to their best effect.

FROM LOGICAL TO PHYSICAL 215

6. DATA DEFINITION LANGUAGE (DDL)

So now we've covered referential integrity, CRUD, denormalization, and
various other solutions to issues and problems that occur when the logical
data model has to be converted into the design for a physical database. The
DBA has most of the responsibility for applying these solutions to your
database-to-be. Once that's done, it's time to create the database in the
database management system using Data Definition Language (DDL).

DDL is a subset of SQL (Structured Query Language) used for defining
the structure of a relational database to a database engine, which then
proceeds to build the physical database. Once the physical considerations
identified above have been treated, DDL statements specific to a database
engine can be written by hand or generated by many software engineering
tools. A parser within the target database engine parses the DDL and
generates tables, columns, joins, and other physical database objects.

Most of the time, the DBA uses a tool to generate the DLL script. Then
he checks the script carefully:

L Vital aspects of the database may not be supported by the tool. For
example, the tool might not permit specification of necessary index
types (e.g., reverse key indexes or partitioned indexes) or referential
integrity strategies (e.g., ON DELETE CASCADE), even when the
target database management system offers full support.

2. The tool's error checking apparatus may not catch interesting errors.
For example, the tool might fail to report any errors whatsoever when
all associations in the logical data model are specified as identifying.

3. The tool's DDL generating facility may generate faulty DDL.
4. Because a physical table can be a parent to a child physical table, the

CREATE TABLE statement for the parent table must appear in the
DDL script prior to the CREATE TABLE statement for the child
table. Among other things, this means that foreign key constraints
generally become more frequent as the DDL generation progresses.
Each FOREIGN KEY constraint (and every other constraint) must be
checked.

5. The length in characters (bytes) of database object names (tables,
constraints, and so on) may be greater than the length in characters
permitted by the database management system.

The generated DDL can be used for purposes other than just building
physical databases.

216 Chapter 12

Reverse engineering has been possible for years. DDL can be
imported into many tools and converted automatically to Class
Diagrams as defined within the Unified Modeling Language (Booch
et ai 1999). These Class Diagrams can be modified and used to
generate code in any number of object oriented languages.
Reingruber and Gregory (1994: 41-44) and Finkelstein (1992: 424-
437) use logical data maps to partition out clusters of closely related
entities which can be considered units of work. Their process can
also be used with the corresponding physical tables.

7. NEW NOTIONS

Physical database, referential integrity, database management system
(DBMS), Database Administrator (DBA), referential constraint, foreign key
constraint, CRUD, CRUD matrix, denormalization. Structured Query
Language (SQL), join, prejoined tables, report table, mirror tables, split
tables, speed table. Data Definition Language (DDL), database engine.
Unified Modeling Language

Chapter 13

THE END AND THE BEGINNING
Wherein we see the rewards of virtue

It's been a good day, your first day as the new General Manager of
Pinebeach Screen Printing and Embroidery. The job isn't easy, but without
the new system it would be a real bear.

The new system. New, custom-made system. New, custom-made,
computer-based work order—there's that term again. Funny how it no
longer makes you shudder. A new work order management system. For
tracking work orders and customers. Installed last Saturday.

When the owner promoted you, he made it clear why:

"What you've done here really simpUfies our life. Used to be, it would
take three to five hours a day to compile orders. Now, five minutes and the
job's done. I mean, we're really pleased with it. It's very exciting, what
you've done. You should be real proud. You've spent a lot of time on it, and
we're very grateful.

"We were pretty much a pen and paper operating system, and with our
growth, what we needed was to be able to look at the big picture and see
exactly what we had: orders pending, orders completed, and it was getting
really tough because of our growth. That involved everybody having a set
time every day to coordinate, and just because of how busy we were getting,
it became harder and harder, and this really solves those problems. Just that
one screen showing all the pending jobs eliminated a lot of time.

"I came to you with a really simple idea: we wanted a work order that we
could see on a computer. You basically took that idea and expanded on it.
It's a real powerful tool that we don't know how to use yet. It's almost too

218 Chapter 13

easy to use. I mean, I'm real happy with it. There's not a lot of training.
Eventually, it's going to free up so much time that we really don't know
what the implications are at this point in time."

WHERE WE'VE BEEN, WHERE WE ARE

It's nice to think about how that all came about. You started with the
business. Then—and, you'll admit, with a good bit of help—you

1. Collected planning statements and built formal Business Statements
for the project area.

2. Identified the entities that represent the information used and collected
in that area.

3. Defined the associations between the entities.
4. Defined the attributes that identify and describe information items.
5. Developed a data map.
6. All along the way, identified and corrected errors in the logical data

model.
7. Applied the rules of business normalization to the data model.

Quite a job. But once you'd gone through all those steps, and done a lot
of revision, you worked with the IT people to implement the data model as a
database on an appropriate hardware and software platform.

Then there was building—good people, those—and testing and
implementation. It was, you've got to admit, an educational experience, and
not just an education in IT project management. Without everything you
learned about the enterprise and its operations, and the decisions you (and
the boss) made about how things should be done differently in the future ...
well, you might still have become General Manager, but would you be able
to do the job?

Not to worry. Nothing's perfect. The system will have to be tuned. The
job's no piece of cake, especially with all the changes to the business. But
that's the fun of it.

THE AUTHORS RESPOND

Our friend has achieved, albeit on a very small scale, Finkelstein's goal:
to integrate "corporate strategic planning with systems development and data

THE END AND THE BEGINNING 219

base design, so that the resulting strategic information systems provide direct
support to management for decision-making" (1992: 3).

The process we've recommended is a logical and practical one, and it
produces a logical data model that is in Third normal form. The logical data
model is what gets turned over to the Database Administrator and the
developers: it's the backbone of the system. From this point, we suggest
using clustering (Finkelstein 1992: 424-437; Reingruber and Gregory 1994:
41-44). On that basis, the architect can identify units of work, the estimator
can build the Gantt chart, and the project manager can assign development
tasks to individuals.

With completion of the logical data model, the project isn't over, but it's
well begun. That means it's half done.

References

Alexander, C , et al. 1977. A Pattern Language. New York, Oxford University Press.

Alpert, S. and K. Brown. 1998. The Design Patterns Smalltalk Companion. Reading,
Massachusetts, Addison-Wesley.

Baklarz, G., et al. 2000. DB2 Universal Database v7.1 for UNIX, Linux, Windows and OS/2
Database Administration Certification Guide. 4th ed. Englewood Cliffs, NJ: Prentice Hall.

Barker, R. 1990. CASE'^Method: Entity Relationship Modelling. Wokingham, England:
Addison-Wesley.

Booch, G., et al. 1999. The Unified Software Language User Guide. Reading, Massachusetts:
Addison-Wesley.

Burch, J., and G. Grudnitski. 1989. Information Systems: Theory and Practice. 5^^ ed. New
York: Wiley.

Burek, P. 2004. CASE*Method: Entity Relationship Modeling: Barker's ERD notation and ist
[sic] ontological extensions. Seminar presentation, "Prinzipien des Ontological
Engineering." Onto-Med, http://www.onto-med.de/de/lehre/ws2003-04-ont-eng/VCase.ppt

Chamberlin, D. 1998. A Complete Guide to DB2 Universal Database. San Francisco: Morgan
Kaufmann.

Chen, P. 1976. The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans.
Database Syst. 1(1): 9-36.
http://www.informatik.uni-trier.de/~ley/db/joumal s/tods/todsl.html#Chen76

Evitts, P. 2000. A UML Pattern Language. New York: Macmillan-Que.

Finkelstein, C. 1990. An Introduction to Information Engineering: From Strategic Planning
to Information Systems. Sydney: Addison-Wesley.

Finkelstein, C. 1992. Information Engineering: Strategic Systems Development. Sydney:
Addison-Wesley.

222 References

Finkelstein, C, and P. Aiken. 2000. Building Corporate Portals with XML. New York:
McGraw-Hill.

Gamma, E., et al. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, Massachusetts, Addison-Wesley.

Halpin, T. 2000. An ORM Metamodel of Barker ER. Journal of Conceptual Modeling, No.
17, Dec 2000. http://www.inconcept.com/JCM/December2000/halpin.html

IBM, iSeries Information Center. "Referential Integrity." http://publib.boulder.ibm.com/
html/as400/v4r5/ic2924/index.htm?info/db2/rbafymstl36.htm

IBM, DB2 Technical Support. "SQL Reference: Constraints." www-306.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/document.d2w/
report?fn=db2s0cnstmt.htm

Kroenke, D. 2002. Database Processing. Ŝ*" ed. Englewood Cliffs, NJ: Prentice Hall.
http://myphliputil.pearsoncmg.com/student/ph_kroenke_databaseprocessing_8/ch04.ppt

Mullins, C. 2002. Database Administration: The Complete Guide to Practices and
Procedures. Boston: Addison-Wesley.

Object Management Group. 2003. Unified Modeling Language (UML), Version L5.
Specification, 1 March 2003. http://www.omg.org/docs/formal/03-03-01.pdf

Pree, W., and E. Gamma. 1995. Design Patterns for Object-Oriented Software Development.
Reading, Massachusetts, Addison-Wesley.

Reingruber, M., and W. Gregory. 1994. The Data Modeling Handbook. New York: Wiley.

Rob, P., and E. Semaan. 2004. Databases: Design, Development, and Deployment Using
Microsoft Access. 2"̂ ed. New York: Irwin McGraw-Hill.

Silverston, L., et al. 2001. The Data Model Resource Book. 2""* ed., 2 vols. New York: Wiley.

Standish Group. 1994. The Chaos Report.
http://www.pm2go.com/sample_research/chaos_l 994_1 .php

U.S. Government. National Institute for Standards and Technology. Information Technology
Laboratory. Integration Definition for Information Modeling (IDEFIX) - 93 Dec 21.
Federal Information Processing Standards. Publication 184: 1993 December 21.
www.itl.nist.gov/fipspubs/by-num.

Visible Systems Corporation. Visible Advantage, www.visible.com.

Yourdon, E. 1989. Modern Structured Analysis. Englewood Cliffs, NJ: Yourdon Press.

Index

abbreviation, 124

acronym, 124, 156

Adobe Illustrator, 53

Adobe PDF, 121

alias. 111

association, viii, 22, 23, 24, 35, 38, 39,
40, 43,46, 47,48, 49, 50, 51, 52, 53,
63, 66, 67, 68, 69, 70, 75, 76, 78, 80,
81, 84, 85, 87, 89, 90, 91, 93, 94, 95,
97, 107, 129, 130, 131, 134, 136, 137,
138, 139, 140, 141, 142, 143, 147,
148, 161, 162, 170, 171, 172, 175,
176, 177, 178, 180, 184, 185, 188,
189, 191, 192, 199, 200, 201, 202,
203,207,213,218

association line, 38, 39,40

assumption, 8, 15

atomic attribute. 111, 112

attribute, viii, 18, 21, 35, 37,46, 56, 57,
64, 65, 66, 67, 70, 73, 79, 84, 99, 102,
103, 107,109,110,111, 112,113,
114,115,116,117,118,121,122,
123, 124, 125, 129, 133, 138, 140,
150, 151, 152, 153, 157, 158, 159,
160, 163, 164, 169, 170, 173, 175,

180, 181, 184, 185, 187, 188, 191,
192,198,207,209,218

autonumber, 148

binary object, 121, 148

Boyce/Codd normal form (BCNF), 164

business event, 12, 17, 18, 23

business normalization, 5, 218

business process re-engineering, 12

business rule, viii, 12, 13, 17, 18, 22, 23,
32, 34, 37, 55, 72, 75, 99,102, 127,
129, 161

Business Statement, viii, 5, 21, 22, 23,
28, 29, 30, 32, 34, 35, 37, 42, 43, 47,
58, 59, 60, 72, 86, 88, 90, 94, 101,
123, 127, 129, 137, 138, 139, 143,
144,145,158,159,167,199,218

candidate key, 124, 157, 164, 208

cardinality, 35,40, 58, 60, 63, 85, 136,
198

categorizing association, 71, 180, 188,
191, 192

category, 21, 73, 77, 81, 93, 157, 180,
184, 185, 187, 188, 191,192,193

224 Index

character string, 119, 120

characteristic, 21, 28, 29, 109, 115

CLOB (character large object), 121, 211

clustering, 20, 216, 219

Codd, E. F., 156

column, 37, 71, 75, 102, 111, 149, 153,
155, 169, 171, 173, 174, 175, 180,
181, 184, 185, 187, 188, 191, 192,
194, 198, 205, 207, 208, 211, 212,
213,214

compound primary key, 64, 65, 71, 74,
78, 79, 80, 82, 83, 108, 111, 131, 142,
150, 151, 152, 153, 159, 161, 171,
173, 174, 176, 178, 184, 185, 191, 192

connector, 38, 39, 48, 52

critical success factor (CSF), 10, 16

CRUD, 205, 215

CRUD matrix, 205, 206

data anomaly, 154, 164, 165

data custodian, 124

Data Definition Language (DDL), 215

data map, viii, 5, 19, 29, 35, 38, 41, 44,
45, 52, 53, 59, 60, 61, 63, 68, 70, 77,
80,81,85,89,90,91,94,97,100,
101, 102, 107, 108, 130, 132, 134,
135, 136, 139, 144, 146, 198, 216, 218

data mapping, 35, 38

data model, viii, 5, 12, 15, 17, 18, 19, 34,
35,36,37,38,59,65,110,113,115,
116,123,133, 145, 157,160,207,
208,218,219

data modeling, vii, 3, 6, 15, 18, 19, 21,
23,26,27,28,36,53,67,69,110,
112,134,148,149,168,197

data modeling session, 19

data redundancy, 152, 153, 154, 156, 164,
180

data steward, 124

data warehouse, 199

Database Administrator (DBA), viii, 5,
110, 199, 203, 204, 206, 207, 208,
209, 210, 214, 215, 219

database design, 2,4

database engine, 123, 199, 203, 207, 209,
215

database management system (DBMS), 3,
119, 123,199,214,215

DB2, 120, 121, 122, 204, 205, 207, 209,
214

degree, 85

deletion anomaly, 154, 164

denormalization, 107, 210, 214, 215

dependency, 150, 151, 153, 157, 159,
160, 162

derived attribute, 103, 114, 115, 117, 118,
163, 164

design pattern, 150, 167, 168,198

determinant, 150, 151, 156, 159, 160,

161, 163,164

document, 15, 17, 121

domain, 118,119,198,207

Domain Key normal form, 165

dynamic principal entity, 44, 45,46, 47,
50, 51, 63, 67, 69, 70, 71, 74, 75, 79,
80, 81, 84, 85, 91, 93, 95, 169, 170,
172, 175, 179, 183, 187, 190

edit mask, 122

edit rule, 118,124

encyclopedia, 127

Enterprise Engineering (EE), 5, 6

enterprise modeling, 7,42, 43,53, 118,
123, 125

Index 225

Enterprise Resource Planning (ERP), 17

enterprise strategic planning, 4

entity, viii, 18, 36.
44,46,49,51,
65, 66, 67, 68,
78,79,81,82,
92, 93, 94, 99,
110,111,112,
124, 125, 128,
135, 136, 137,
147, 148, 149,
157, 158, 159,
165, 169, 170,
180, 181, 182,
188, 191, 192,
209,210,212,

,37,38,40,41.
55, 56, 57, 60,
69,70,71,73,
83, 84, 85, 88,
101, 102, 108,
113,115,116,
129, 130, 133,
138, 140, 143,
150, 151, 152,
161, 162, 163,
171, 173, 178,
183, 184, 185,
193, 195,198,
213,218

, 42,43,
63, 64,
75, 77,
89,91,
109,
117,
134,
144,
156,
164,
179,
187,
207,

entity cycle, 133, 134, 135, 136, 143

entity list, viii, 56, 65, 66, 68

entity rectangle, 37, 38, 39,43, 52

entity roster, 37,41

Entity-Entity Matrix, 41,42,43, 53, 57,
58, 60,107, 129

equal association, 91, 95

ERwin, 53

exclusive type entity, 50,79

exclusive type relationship, 80, 93, 180

Fifth normal form, 164

First normal form (INF), 156, 157, 158,
159,161,212

foreign key, 35, 63, 66, 67, 68, 69, 71, 73,
74, 75, 76, 77, 82, 90, 91, 94, 97,100,
102,108, 109,110,111,117,118,
131, 133, 135, 140, 141, 142, 148,
151, 156, 157, 159, 160, 163, 164,
170, 171, 173, 174, 175, 177, 178,
180, 183, 185, 188, 189, 192, 193,
199, 203, 204, 205

foreign key constraint, 199, 215

Fourth normal form, 164

goal, 10, 16

group attribute, 102, 108, 112, 113, 117,
157

identifying association, 67, 71, 131, 171,
180,188,189,191,192,208

inclusive type entity, 50, 79

inclusive type relationship, 81, 93,184,
191

Information Engineering (EE), viii, 4, 5

insertion anomaly, 154, 164

instance, 23, 25, 26, 27, 36, 38, 39, 40,
48, 50, 64, 66, 67, 71, 73, 74, 75, 77,
79, 80, 81, 83, 92, 93, 100, 101, 111,
112,117,118,122,123,124,135,
137, 141, 147, 148, 152, 153, 157,
165, 170, 175, 177, 178, 180, 184,
185, 187, 188, 190, 191, 192, 193,
201,212

integrity, 124, 157, 199, 200, 203, 204

integrity constraint, 124, 199

intersecting entity (I), 46, 47, 51, 69, 71,
72, 73, 74, 78, 87, 88, 92, 93, 95, 107,
108, 112, 129, 131, 137, 139, 143,
144, 145, 158, 161, 173, 174

invalid association, 91

issue for resolution, 14, 17

issue management, 12

join, 164, 165,207,208,210

join dependency, 164

key, 5,40, 52, 64, 65, 66, 67, 68, 69, 70,
71,74,75,76,84, 111,112,117,118,
129, 130, 137, 141, 142, 148, 150,
154, 156, 157, 159, 161, 162, 164,
168, 171, 174, 175, 178, 180, 184,
185, 188, 191, 192, 198, 202, 203,
205, 208, 209, 211, 213, 214, 215

key attribute, 84,164, 198, 208

kind, 85

226 Index

logical data model, viii, 3, 5, 19, 22, 124,
132, 150, 156, 157, 197, 199, 204,
207, 208, 210, 212, 215, 218, 219

mandatory, 39,40,48, 49, 52, 63, 69, 76,
85, 86, 88, 90, 93, 94, 96, 161,171,
172, 173, 174, 180, 184, 185, 188,
191,192,201,203,207,208

many-to-many association (M:M), 38,40,
46, 47, 50, 71, 79, 81, 85, 87, 89,91,
92, 95, 96, 129, 137, 143, 144, 145,
161, 162, 172, 175, 184, 191, 198

metadata, 18

meta-entity, 46,47, 53, 129, 130, 161

Microsoft Access, 119

Microsoft SQL Server, 209

Microsoft Visio, 53

Microsoft Word, 121

MIME, 121, 160, 161

mirror tables, 211

mission, 6, 8, 15

mixed secondary/principal entity, 75, 84,
91, 173, 182

Model Analysis report, 130, 132

multiple association, 133, 144

multivalued dependency, 164

nature, 85

non-identifying association, 68, 70, 71,
76, 131, 171,208

non-key attribute, 78, 108, 109, 117, 130,
157, 160, 163, 169, 170, 173, 175,
180, 181, 182, 184, 185, 187, 188,
191, 192,209

non-originating primary key, 66

normal form, 149, 156, 164, 165

normalization, viii, 5, 35, 114, 115, 124,
133,148,149,150,156, 164,209

null value, 28, 124, 148, 150, 203, 204,
205, 210

objective, 10, 11, 16

one-to-many association (1:M), 38,48,
51, 63, 79, 85, 86, 91, 92, 93, 94, 95,
117, 129, 133, 137, 139, 140, 142,
143, 171, 175, 177, 185, 188, 192, 207

one-to-one association (1:1), 38, 85, 86,
91,93,133,147,175

operational area, 9, 14, 20

operational modeling, 4, 7, 12, 197

opportunity, 9, 15

optional, 39, 40, 48, 49, 52, 63, 69, 76,
85, 87, 88, 89, 90, 93, 94, 124, 137,
147,161,171,172,173,174,176,
177, 180, 184, 185, 188, 191, 192,
207, 208

optional-becoming-mandatory, 39, 40,
52, 69, 85, 89, 90, 94, 148, 172, 173,
174, 185, 188, 192

optionality, 35, 40, 50, 60, 63, 85, 89,
148, 174, 198

Oracle, ix, 119

originating primary key, 66, 69, 74, 75,
108, 112, 156, 169, 173, 175,178,
180, 181, 184, 185, 187, 188, 191, 192

P (design pattern), 168, 172

parallel intersecting entities, 133, 144,
145, 146

parent-child relationship, 40, 63, 64, 72

partial functional dependency, 151, 152,
153, 154,156, 157,159, 160,161,
163,164

physical database, 5, 17, 102, 111, 118,
132, 156,169,170,173,176,181,
186, 189, 193, 199, 200, 204, 207,
208,209,210,211,215

PIP (design pattern), 172

Index 111

planning statement, 3, 5, 6, 7, 14, 15, 17,
18, 20, 21, 22, 30, 115, 123, 127, 129,
218

policy,6, 10, 11, 16, 18,26,29

PP (design pattern), 170

prejoined tables, 210

primary key, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 78, 79, 80, 81,
83, 84, 99, 100, 101, 102, 108, 109,
111,112,115,117, 118,124,129,
131, 133, 138, 141, 142, 143, 144,
148, 150, 151, 154, 157, 160, 161,
162, 163, 164, 170, 171, 173, 174,
175, 178, 180, 183, 184, 185, 187,
188,191,192,198,199,208,213

principal entity (P), viii, 44,45,46,48,
50, 51, 52, 63, 69, 70, 74, 75, 79, 92,
94, 100, 130, 131, 136, 137, 138, 139,
141, 142, 144, 168, 169, 170, 173,
177,178

process modeling, 7, 12

property, 22, 28

PU (design pattern), 175, 190

Rational Rose, 53

record, 66, 123, 154, 155, 156, 182

recursion, 81, 82, 141, 187, 190

recursive association, 39,41, 51, 79,175

red flag association, 91, 94, 95, 97

referential constraint, 203, 205

referential integrity, 118, 124, 199, 203,
204, 215

relational database, vii, 41, 45,49, 87, 95,
157,215

repeating group attribute, 103, 113, 117,
157, 158, 164, 212

report table, 211

repository, 127

reserved word, 55, 116

role entity (R), viii, 50, 51, 55, 69, 73, 74,
79, 81, 82, 83, 92, 93, 136, 141, 150,
151

row, 37,67, 111, 149, 154, 171, 198, 199,
200, 201, 202, 203, 204, 205, 208,
211,212,213,214

Second normal form (2NF), 156, 159,
161

secondary entity (S), 41, 45, 46, 47, 52,
63, 67, 69, 70, 71, 73, 74, 75, 77, 79,
81, 83, 84, 91, 92, 112, 136, 138, 141,
157, 159, 173, 177, 198

selection attribute, 102, 111, 112, 117,
148, 157, 208

serialnumber, 65, 100, 108

single value, 157

SmartDraw, 53

split table, 211

Standard Form, 23, 24, 25, 26, 27, 28, 29,
30, 39, 42, 49, 109, 127

Standard Operating Procedure (SOP), 18,
31

Statement report, 129

Statement-Data Matrix, 129

Statement-Entity Matrix, 43

static principal entity, 44, 69, 70, 84, 91,
94, 160, 169, 170

strategic information system, 4, 219

strategic modeling, 6, 7, 9, 12

strategic planning, 3, 4, 7, 15, 218

strategy, 10, 16

strength, 8, 15

strong mandatory "one" (SMI), 86, 88,
134,203,204

228 Index

structure entity (U), viii, 51, 52, 55, 69,
77, 78, 79, 80, 81, 83, 84, 91, 93, 111,
136,141,143,175,213

Structured Query Language (SQL), 209,
211,215

subject matter expert, vii, 3, 4, 18, 94, 96,
136, 144, 147, 156, 159, 160, 168, 198

subtype, 24, 25, 26,45,46, 48, 49, 50, 69,
70, 71, 74, 79, 92, 93, 99, 121, 138,
139, 140, 141, 147, 179, 180, 183,
184,187,188,192,201,210

supertype, 47, 48,49, 51, 70, 79, 92, 147,
157

SWOT, 7

system controlled ID, 123, 130, 131

system design goal, 14, 17

system design objective, 13, 17

system event, 12, 17, 122

system requirement, 13, 17

systems development, 3,4, 5, 16, 218

table, 5, 37,40, 45, 49, 66, 67, 95, 108,
109, 111, 115,118,140, 148, 149,
153,154,155,156,157,158,161,
163,169,174,175,177,180,181,
182, 184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 199, 200,
201, 202, 203, 204, 205, 206, 207,
208,210,211,212,213,214,215

tactic, 11, 16

tactical modeling, 6, 9, 12, 16, 20

task, 11, 16

testing, 149,218

Third normal form (3NF), 143, 149, 156,
161,210,212,219

threat, 9, 15

TPSS (design pattern), 179, 185,186, 190

TPSSU (design pattern), 179,183, 187,
195

transitive dependency, 151, 153, 154,
155, 156, 157, 161, 162, 163, 164

triad, 133, 136, 137, 138, 141,142, 143,
146

TRPSS (design pattern), 183, 195

TRUPSS (design pattern), 190

type entity (T), viii, 47, 48,49, 50, 51, 55,
69,70,72,73,74,75,79,81,112,
136, 141, 151, 178

typed principal entity, 75

typed secondary entity, 75

Unicode, 120

Unified Modeling Language (UML), viii,
216

update anomaly, 154, 164

valid association, 50, 63, 86, 92, 96, 97,
133, 147,203

validation, 149, 150

Visible Advantage, 7,43, 53, 123, 127,
129, 130, 205

vision, 7, 15

weakness, 8, 15

WOTS-UP, 7

